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Dynamics of ranking
Gerardo Iñiguez 1,2,3✉, Carlos Pineda 4, Carlos Gershenson 3,5,6,7 & Albert-László Barabási1,7,8✉

Virtually anything can be and is ranked; people, institutions, countries, words, genes. Rank-

ings reduce complex systems to ordered lists, reflecting the ability of their elements to

perform relevant functions, and are being used from socioeconomic policy to knowledge

extraction. A century of research has found regularities when temporal rank data is aggre-

gated. Far less is known, however, about how rankings change in time. Here we explore the

dynamics of 30 rankings in natural, social, economic, and infrastructural systems, comprising

millions of elements and timescales from minutes to centuries. We find that the flux of new

elements determines the stability of a ranking: for high flux only the top of the list is stable,

otherwise top and bottom are equally stable. We show that two basic mechanisms —

displacement and replacement of elements — capture empirical ranking dynamics. The

model uncovers two regimes of behavior; fast and large rank changes, or slow diffusion. Our

results indicate that the balance between robustness and adaptability in ranked systems

might be governed by simple random processes irrespective of system details.
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Rankings are everywhere. From country development indi-
ces, academic indicators, and candidate poll numbers to
music charts and sports scoreboards, rankings are key to

how humans measure and make sense of the world1,2. The ubi-
quity of rankings stems from the generality of their definition:
reducing the (often high-dimensional) complexity of a system to
a few or even a single measurable quantity of interest3,4, dubbed
score, leads to an ordered list where elements are ranked, typically
from highest to lowest score. Rankings are, in this sense, a proxy
of relevance or fitness to perform a function in the system.
Rankings are being used to identify the most accomplished
individuals or institutions, and to find the essential pieces of
knowledge or infrastructure in society1. Since rankings often
determine who gets access to resources (education, jobs, and
funds), they play a role in the formation of social hierarchies5,6

and the potential rise of systematic inequality7.
The statistical properties of ranking lists have caught the

attention of natural and social scientists for more than a century. A
heavy-tailed decay of score with rank, commonly known as Zipf’s
law8,9, has been systematically observed in the ranking of cities by
population10,11, words and phrases by frequency of use12–17,
companies by size18–20, and many features of the Internet21. Zipf’s
law appears even in the score-rank distributions of natural systems,
such as earthquakes22,23, DNA sequences24, and metabolic
networks25. Rankings have also proven useful when analyzing
productivity and impact in science and the arts7,26–29, in human
urban mobility30–32, epidemic spreading by influentials33, and the
development pathways of entire countries34. Recently, studies of
language use17,35, sports performance36, and many biological and
socioeconomic rankings37 have strengthened the notion of uni-
versality suggested by Zipf’s law: despite microscopic differences in
elements, scores, and types of interaction, the aggregate, macro-
scopic properties of ranking lists are remarkably similar through-
out nature and society.

The similarity of score-rank distributions across systems raises
the question of the existence of simple generative mechanisms
behind them. While mechanisms of proportional growth38,
cumulative advantage39, and preferential attachment40 are often
used to explain the heavy-tailed distributions of ranking lists at
single points of time41,42, they fail to reproduce the way elements
actually move in rank43, such as the sudden changes in city size
throughout history44,45. Here, we report on the existence of
generic features of rank dynamics over a wide array of systems,
from individuals to countries, and spatio-temporal scales, from
minutes to centuries. By measuring the flux of elements across
ranking lists46–48, we identify a continuum ranging from systems
where highly ranked elements are more stable than the rest, to
systems where the least relevant elements are also stable. We
show that simple mechanisms relying on fluxes generated by
displacement and replacement of elements can account for all
observed patterns of rank stability. A model based on these
ingredients uncovers two regimes in rank dynamics, a fast regime
driven by long jumps in rank space, and a slow one driven by
diffusion.

Results
We gather 30 ranking lists in natural, social, economic, and
infrastructural systems. Data include human and animal groups,
languages, countries and cities, universities, companies, trans-
portation systems, online platforms, and sports, with no selection
criteria other than having enough information for analysis (for
data details see Supplementary Information [SI] Section S2 and
Table S1). Elements in each list are ranked by a measurable score
that changes in time: scientists by citations, businesses by rev-
enue, regions by a number of earthquakes, players by points, etc.

Size and temporal scales in the data vary widely, from the number
of people in 636 station entrances of the London Underground
every 15min during a week in 201249, to the written frequency of
124k English words every year since the 17th century50. Following
an element’s rank through time reveals systematic patterns
(Fig. 1). For example, in the Academic Ranking of World Uni-
versities (ARWU)51, published yearly since 2003, institutions like
Harvard and Stanford maintain a high score, while institutions
down the list change rank frequently (Fig. 1a).

Ranking lists typically have a fixed size N0 (e.g., the Top 100
universities51, the Fortune 500 companies52), so elements may
enter or leave the list at any of the T observations t= 0,…, T− 1,
allowing us to measure the flux of elements across rank
boundaries42,46,47 (for the observed values of N0, T see SI Table S1).
We introduce two time-dependent measures of flux: the rank
turnover ot=Nt/N0, representing the number Nt of elements ever
seen in the ranking list until time t relative to the list size N0, and
the rank flux Ft, representing the probability that an element enters
or leaves the ranking list at time t. Rank turnover is a monotonic
increasing function indicating how fast new elements reach the list
(Fig. 1b left; all datasets in SI Fig. S5). In turn, flux shows striking
stationarity in time despite differences in temporal scales and
potential shocks to the system (SI Fig. S3). By averaging over time,
the mean turnover rate _o ¼ ðoT�1 � o0Þ=ðT � 1Þ and the mean
flux F= 〈Ft〉 turn out to be highly correlated quantities that
uncover a continuum of ranking lists (Fig. 1b right; values in SI
Table S2). In one extreme, the most open systems (F; _o � 1) have
elements that constantly enter and leave the list. Less open systems
(F; _o � 0) have a progressively lower turnout of constituents. Five
out of 30 ranking lists are completely closed (F ¼ _o ¼ 0), meaning
no single new element is recorded during the observation window.

The measures of rank turnover and flux reveal regularities in
the stability of ranking processes43,53. We follow the time series of
the rank Rt occupied by a given element at time t44 (Fig. 1c; all
datasets in SI Fig. S2). In most systems, highly ranked elements
like Harvard University and the English word ‘the’ never change
position, showcasing the correspondence between rank stability
and notions of relevance like academic prestige7,27, grammatical
function17,50, and underlying network structure53. As we go down
the ranking list of open systems, rank trajectories increasingly
fluctuate in time. In the least open systems where turnover and
flux are low, however, low ranked elements are also stable. In the
ranking of British cities by population, for example, both Bir-
mingham and Nairn remain the most and least populated local
authority areas throughout the 20th century54. These findings
uncover a more fine-grained sense of rank stability: most systems
have a stable top ranking, but only the least open systems feature
stable bottom ranks as well. The rank change C, measured as the
average probability that element at rank R changes between times
t− 1 and t, varies between an approximately monotonic
increasing function of R for open systems to a symmetric shape as
systems become less open (Fig. 1d; all datasets in SI Fig. S6).

Since the stability patterns of an empirical ranking list (as
measured by rank change C) can be systematically connected to
the number of elements flowing into and out of the list, we build a
model of rank dynamics based solely on simple generative
mechanisms of flux (Fig. 2). Without assuming system-specific
features of elements or their interactions, there are at least two
ways to implement flux in rank space. Smooth (but arbitrarily
large) changes in the score of an element might make it larger or
smaller than other scores, causing elements to move across ranks
(the way some scientists gather more citations than others27, or
how population size fluctuates due to historical events44).
Regardless of the score, elements might also disappear from the
list and be replaced by new elements: young athletes enter
competitions while old ones retire36; new words replace
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anachronisms due to cultural shifts50. We implement random
mechanisms of displacement and replacement in a simple model
by considering a synthetic ranking list of length N0 embedded
within a larger system of size N ≥N0. At each time step of length
Δt= 1/N, a randomly chosen element moves to a randomly
selected rank with probability τ, displacing others. At the same
time, a randomly chosen element gets replaced by a new one with
probability ν, leaving other ranks untouched. The dynamics
involve all N elements, but to mimic real ranking lists, we only
consider the top N0 ranks when comparing with empirical data
(Fig. 2a; model details in SI Section S4).

We solve the model analytically by introducing the displace-
ment probability Px,t that an element with rank r= R/N gets
displaced to rank x= X/N after a time t (Fig. 2b; uppercase/
lowercase symbols denote integer/normalized ranks). Since for
small Δx= 1/N the probability that at time t an element has not
yet been replaced is e−νt, we have

Px;t ¼ e�νtðLt þ Dx;tÞ: ð1Þ
Here, Lt= (1− e−τt)/N is the (rank-independent) probability that
up until time t an element gets selected and jumps to any other
rank. The length of jumps is uniformly distributed, so they can be
thought of as a Lévy random walk with step length exponent 055

(full derivation in SI Section S4). The probability Dx,t=D(x, t)Δx
that the element in rank r gets displaced to rank x after a time t
(due to Lévy walks of other elements) follows approximately the
diffusion-like equation

∂D
∂t

¼ αxð1� xÞ ∂
2D
∂x2

; ð2Þ

where α= τ/N. Since ∑xDx,t= e−τt, both Dx,t and D(x, t) are not
conserved in time. Instead of a standard diffusion equation, Eq.

(2) is equivalent to the Wright-Fisher equation of random genetic
drift in allele populations56,57. The solution D(x, t) of Eq. (2) is
well approximated by a decaying Gaussian distribution with
mean r and standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2αrð1� rÞt
p

, i.e., a diffusion
kernel (Fig. 2b). Overall, local displacement makes elements
slowly diffuse around their initial rank, while Lévy walks and the
replacement dynamics reduces exponentially the probability that
old elements remain in the ranking list.

An explicit expression for the displacement probability Px,t
allows us to derive the mean flux

F ¼ 1� e�ν ½pþ ð1� pÞe�τ �; ð3Þ
and the mean turnover rate

_o ¼ ν
ν þ τ

ν þ pτ
; ð4Þ

where p=N0/N is the length of the ranking list relative to system
size (see SI Section S4). In order to fit the model to each empirical
ranking list, we obtain N0 from the data and approximate N=NT−1

as the number of distinct elements ever seen in the list during the
observation period T, thus fixing p (values for all datasets in SI
Tables S1–S2). The remaining free parameters τ and ν (regulating
the mechanisms of displacement and replacement) come from
numerically solving Eqs. (3)–(4) with F and _o fixed by the data
(Figs. 1b and 2c; for model fitting see SI Section S5). The approx-
imations in Eqs. (3)–(4) introduce a small bias in the estimation of τ
(SI Fig. S18). Despite this bias, the simple generative mechanisms of
flux in the model are enough to recover the behavior of ranking lists
as quantified by Px,t and C (Fig. 2d and SI Fig. S19): When rank flux
is low, both the top and bottom of the list are similarly stable and
rank dynamics is mostly driven by an interplay between Lévy walks
and diffusion. As systems become more open, however, this
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Fig. 1 Ranking lists in nature and society show generic patterns in their dynamics. a Yearly top ranking of universities worldwide according to ARWU
score51. Elements in the system change rank as their scores evolve in time. b (Left) Rank turnover ot at time t for studied systems, defined as the number Nt

of elements ever seen in the ranking list up to t relative to list size N0 (see SI Fig. S5). (Right) Correlation between mean turnover rate _o and mean flux F
(average probability that an element enters or leaves the list). Ranking lists form a continuum from the most open systems (F; _o � 1) to the less open
(F; _o � 0; for values see SI Table S2). The area between dashed lines has linear scales to show closed systems with F ¼ _o ¼ 0. (c) Time series of rank Rt/
N0 occupied by elements across the ranking list in selected systems (all datasets in SI Fig. S2). In the least open systems available, the top and bottom of
the ranking list are stable. In open systems, only the top is stable. d Rank change C (average probability that element at rank R changes between t− 1 and t)
across ranking lists (see SI Fig. S6), for F≥ 0.01 (top) and F < 0.01 (bottom). The stable top and bottom ranks of less open systems mean C is roughly
symmetric. In open systems, C increases with rank R.
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symmetry gets broken due to a growing flux of elements at the
bottom of the ranking list (see SI Fig. S4). Regardless of whether we
rank people or animals, words or countries, the pattern of stability
across a ranking list is accurately emulated by random mechanisms
of flux that disregard the microscopic details of the individual
system.

The characterization of flux in ranking lists with mechanisms
of displacement and replacement of elements reveals regimes of
dynamical behavior that are not apparent from the data alone
(Fig. 3). By rescaling the fitted parameter values of the model as

τr ¼
τ

pð1� pÞ _o and νr ¼
ν � p _o

_o
; ð5Þ

most open ranking lists (F; _o > 0) are predicted to follow the
universal curve

τrνr ¼ 1; ð6Þ
which suggests that ranking dynamics are regulated by a single
effective parameter [Fig. 3a; derivation in SI Section S5; for a
discussion of the role of fluctuations on the validity of Eq. (6) see
SI Figs. S18–S20]. Even if, potentially, displacement and repla-
cement could appear in any relative quantity, adjusting the model
to observations of rank flux and turnover (Fig. 1b) leads to an
inverse relationship between parameters regulating their gen-
erative mechanisms. Real-world ranking lists lie in a spectrum
where their dynamics is either mainly driven by score changes
that displace elements in rank (high τr and low νr, like for GitHub
software repositories58 ranked by daily popularity), or by birth-
death processes triggering element replacement (low τr and high
νr, like for Fortune 500 companies52 ranked by yearly revenue).
While the symmetry (or lack thereof) in rank change C may

seemingly imply two distinct classes of systems (see Figs. 1d and
2d), Eq. (6) reveals the existence of a continuum of open ranking
lists, which can be captured by a single model with a single
effective parameter.

Data on empirical ranking lists is constrained by the average
time length ℓ between recorded observations, which varies from
minutes to years depending on the source and intended use of the
rankings (ℓ for all datasets is listed in SI Table S1). We explore
such scoping effect by subsampling data every k observations (for
details see SI Section S5 and SI Figs. S21–S22). Longer times
between snapshots of the ranking list lead to an increase in rank
flux, turnover, and fitted parameters, such that the rate of element
replacement ν/kℓ stays roughly constant (Fig. 3b top). A con-
served replacement probability per unit time, robust to changes in
sampling rate, is yet another measure of rank stability: online
social systems exchange elements frequently (e.g., the ranking lists
by daily popularity of both GitHub software repositories and of
online readers of the British newspaper The Guardian59), fol-
lowed by sports, while languages are the most stable (values for
k= 1 in SI Table S2).

The universal curve in Eq. (6) displays three regimes in the
dynamics of open ranking lists, as measured by the average
probabilities that, between consecutive observations in the data,
an element performs either a Lévy walk [Wlevy= e−ν(1− e−τ)],
changes rank by diffusion [Wdiff= e−νe−τ], or is replaced
[Wrepl= 1− e−ν], with Wlevy+Wdiff+Wrepl= 1. In systems
with the largest rank flux and turnover (GitHub repositories and
The Guardian readers), elements tend to change rank via long
jumps, following a Lévy walk, where Wlevy >Wdiff,Wrepl (Fig. 3c).
Here, long-range rank changes take elements in and out of a short
ranking list within a big system (low p), thus generating large
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Fig. 2 Model of rank dynamics reproduces features of real-world ranking lists. a Model of rank dynamics in a system of N elements and ranking list size
N0. At time t, a random element is moved to a random rank with probability τ. A random element is also replaced by a new element with probability ν.
b Probability Px,t that element in rank r= R/N moves to x= X/N after time t (uppercase/lowercase symbols are integer/normalized ranks). Elements not
replaced diffuse around x= r (with probability Dx,t) or perform Lévy walks55 (with probability Lt). Eq. (2) recovers simulation results, shown here for τ= 0.1,
ν= 0.2, N= 100, and N0= 80 at times t= 1, 5 (left/right plots), averaged over 105 realizations. c Time series of rank flux Ft over observation period T for
data (lines), and mean flux F from the fitted model (dashes) (all datasets in SI Fig. S3; for fitting see SI Section S5). d Probability Px,t for t= 1 and varying
r (left) and rank change C (right), shown for selected datasets (lines) and fitted model (dashes; τ and ν in the plot) (empirical Px,t is passed through a
Savitzky–Golay smoothing filter; see SI Figs. S6–S9 and SI Table S2). As systems become more open, we lose symmetry in the rank dependence of both C
and the height of the diffusion peaks of Px,t (signaled by curved arrows). Data and model have similar qualitative behavior in all rank measures (for a
systematic comparison see SI Fig. S19).
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mean flux F (see SI Table S2). Most datasets, like the yearly
rankings of scientists by citations in American Physical Society
journals27,60 and of countries by economic complexity34,61,
belong instead to a diffusion regime with Wdiff >Wlevy,Wrepl

(Fig. 3d). In this regime, local, diffusive rank dynamics is the
result of elements smoothly changing their scores and over-
coming their neighbors in rank space. Under subsampling,
ranking lists move downwards along the universal curve, going
from a state with a certain number of Lévy walks to one more
driven by diffusion (Fig. 3b bottom; all datasets in SI Fig. S22).

The model also predicts a third regime dominated by repla-
cement (Wrepl >Wlevy,Wdiff; Fig. 3e), where elements are more
likely to disappear than change rank. Such ranking lists replace
most constituents from one observation to the next, forming a
highly fluctuating regime that we do not observe in empirical
data. To showcase the crossover between regimes, we simulate the
model along the universal curve of Eq. (6) while keeping p and _o
fixed in Eq. (5) (lines in Fig. 3c–e). These curves show how close
systems are to a change of regime, i.e., from one dominated by
Lévy walks to one driven by diffusion. When a ranking list is close
to a regime boundary, external shocks (amounting to variations
in parameters τ and ν) may change the main mechanism behind
rank dynamics, thus affecting the overall stability of the system.

Discussion
Ranking lists reduce the elements of high-dimensional complex
systems into ordered values of a summary statistic, allowing us to
compare seemingly disparate phenomena in nature and

society2,42. The diversity of their components (people, animals,
words, institutions, and countries) stands in contrast with the
statistical regularity of score-rank distributions when aggregated
over time9,37. By exploring the flux of elements of 30 ranking lists
in natural, social, economic, and infrastructural systems, we
present evidence of generic temporal patterns of rank dynamics.
While open systems (large flux) keep the same elements only in
top ranks, less open systems (lower flux) also have stable bottom
ranks, forming a continuum of ranking lists explained by a single
class of models. The model reveals two regimes of dynamical
behavior for systems with nonzero flux. Real-world ranking lists
are driven either by Lévy random walks55 that change the rank of
elements abruptly or by a more local, diffusive movement similar
to genetic drift56,57, both alongside a relatively low rate of element
replacement independent from the frequency at which the
ranking list is measured.

Our results suggest that, even though score distributions differ
across systems depending on what type of elements and inter-
actions they have (SI Fig. S1), ranking lists have similar stability
features. What are the underlying properties of the system that
enhance this similarity? An extension of our model explicitly
considering the links between score and rank may help further
understand the experimental evidence in this area, like the recent
observation that the stability of crowdsourced rankings depends
on the magnitude difference between quality scores62. It is also
interesting to consider the observed deviations from the predic-
tions of our model, even at the level of ranks. Rank flux for
languages is not constant but decreases over time (SI Fig. S3),
arguably due to the long observation period (over three centuries;

Fig. 3 Model uncovers regimes of dynamical behavior in open ranking lists. a Rescaled model parameters τr and νr in open ranking lists, obtained from
fitted parameters τ and ν, relative ranking list size p, and mean turnover rate _o [see Eq. (5) and SI Section S5; only systems with _o>10�3 are shown]. Values
collapse onto the universal curve τrνr= 1, so an inverse relationship between displacement and replacement is enough to emulate empirical rank dynamics
(asterisks denote datasets that are farther away from the universal curve than bootstrapped model simulations; see SI Fig. S20). b (Top) Rate of element
replacement ν/kℓ when subsampling data every k observations of length ℓ (see SI Table S1 and SI Section S5). Online social systems have the largest rates,
followed by sports and languages (SI Table S2). (Bottom) Parameters τr and νr for Teff= ⌈T/k⌉ subsampled observations (all datasets in SI Fig. S22). By
subsampling ranking dynamics, systems move downwards along the universal curve while keeping a constant replacement rate. c–e Average probability
that an element changes rank by Lévy walk (Wlevy), diffusion (Wdiff), or is replaced (Wrepl) between consecutive observations in the data. Probabilities are
shown both for selected datasets (dots), and for the model moving along the curve τrνr= 1 with the same p and _o as the data (lines) (for rest of systems
see SI Fig. S17). The simulated system in (e) is the model itself for given values of τ, ν, and p (shown in plot). The model reveals a crossover in real-world
ranking lists between a regime dominated by Lévy walks (b) to one driven by diffusion (c). Although not seen in data, the model also predicts a third regime
driven by replacement (d).
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see SI Table S1), variations in word sampling across decades, or
even cognitive distortions at the societal scale63. The rank-
dependence of flux for very open systems (SI Fig. S4) and the slow
decay of inertia with long times we observe in most datasets (SI
Fig. S7) might be better reproduced by a non-uniform sampling
of elements in the mechanisms of displacement and replacement
of the model. Finally, deviations in the data (indicating a
departure from the assumptions of randomness and stationarity
built into our model) could be used to detect shocks to the system
larger than expected statistical fluctuations, such as the sudden
increase in the rank flux of Fortune 500 companies during
financial crises (SI Fig. S3).

A more nuanced understanding of the generic features of
ranking dynamics might help us limit resource exhaustion in
competitive environments, such as information overload in
online social platforms and prestige biases in scientific
publishing64, via better algorithmic rating tools65. The observa-
tion of a systematic interplay between “slower” and “faster”
ranking dynamics66 (see SI Section S6) can be refined by
exploring the relationship between ranking lists associated with
the same system, or by incorporating networked interactions that
lead to macroscopic ordering44,67, which may provide a deeper
understanding of network centrality measures based on
ranking68. Given that rankings often mediate access to resources
via policy, similar mechanisms to those explored here may play a
role in finding better ways to avoid social and economic disparity.
In general, a better understanding of rank dynamics is promising
for regulating systems by adjusting their temporal heterogeneity.

Data availability
For data availability, see SI Section S2. Non-public data is available from the authors
upon reasonable request.

Code availability
Code to reproduce the results of the paper is publicly available at https://github.com/
iniguezg/Farranks69.
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