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Abstract

Summary: Network medicine leverages the quantification of information flow within sub-cellular networks

to elucidate disease etiology and comorbidity, as well as to predict drug efficacy and identify potential

therapeutic targets. However, current Network Medicine toolsets often lack computationally efficient data

processing pipelines that support diverse scoring functions, network distance metrics, and null models.

These limitations hamper their application in large-scale molecular screening, hypothesis testing, and

ensemble modeling. To address these challenges, we introduce NetMedPy, a highly efficient and versatile

computational package designed for comprehensive Network Medicine analyses.

Availability: NetMedPy is an open-source Python package under an MIT license.

Source code, documentation, and installation instructions can be downloaded from

https://github.com/menicgiulia/NetMedPy and https://pypi.org/project/NetMedPy. The package can run

on any standard desktop computer or computing cluster.

Contact: Correspondence should be addressed to Giulia Menichetti, Ph.D.

(giulia.menichetti@channing.harvard.edu)

Supplementary information: Supplementary data are available at Bioinformatics online.

Introduction

Network medicine is a post-genomic discipline that harnesses

network science principles to analyze the complex interactions

within biological systems, viewing diseases as localized disruptions

in networks of genes, proteins, and other molecular entities

(Barabási et al., 2011). areas(do Valle et al., 2021, Nasirian

and Menichetti, 2023). By integrating comprehensive biological

networks, such as the interactome or protein-protein interaction

network (PPI), with databases of disease-associated genes (GDA)

and ligand-protein interactions, Network Medicine has: 1)

successfully identified functional pathways linked to specific

phenotypes and diseases (Sharma et al., 2015); 2) pinpointed

potential drug targets, highlighting opportunities for drug

repurposing (Cheng et al., 2018, Patten et al., 2022) and effective

drug combinations (Cheng et al., 2019). Additionally, this

framework has been extended beyond pharmaceuticals to identify

food-derived small molecules that impact specific therapeutic areas

(do Valle et al., 2021, Nasirian and Menichetti, 2023).

The structure of the biological network plays an essential role in

the system’s ability to efficiently propagate signals and withstand

random failures.

Consequently, most analyses in Network Medicine focus on

quantifying the efficiency of communication between different

regions of the interactome.

For example, proteins involved in similar therapeutic areas

or disease modules are expected to create a cohesive functional

subgraph of proteins that communicate and influence each

other. In turn, diseases with high pathobiological similarity

typically reside in overlapping neighborhoods of the interactome

as measured by the separation score (Menche et al., 2015,

Supplementary Information SI).
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Similarly, areas of the interactome perturbed by a drug should

be close to its protein targets as quantified by the proximity score

(Guney et al., 2016, Supplementary Information SI).

The speed and reliability of signaling are most commonly

quantified through shortest-path metrics with expectations set by

uniform or degree-preserving null models, highlighting biological

properties not solely determined by link density or degree

distribution (Supplementary Information SII). However, biological

information does not always travel along geodesic paths, in

part because of differences in the flow of information across

links. Therefore, a comprehensive assessment of proximity and

separation must consider additional metrics of diffusion and

communicability. Given the complexity of these combinatorial

settings, efficient algorithms are crucial for exhaustive screening

of disease atlases and molecular libraries.

Despite the importance of network measures, most Network

Medicine packages focus on the curation of the interactome (Helmy

et al., 2022, de Carvalho, 2023) or the curation of GDAs (de Weerd

et al., 2022, Ben Guebila et al., 2023). Existing packages that

calculate proximity and separation have not advanced beyond

their initial introduction (Wang et al., 2022, Maier et al., 2024).

As a result, these tools remain highly inefficient for large-scale

screening and rely exclusively on shortest-path metrics and limited

sample size for hypothesis testing. Here, we introduce NetMedPy,

an intuitive Python package for Network Medicine designed to

quantify network localization, calculate proximity and separation

between biological entities, and conduct screenings involving a

large number of diseases and drugs efficiently. NetMedPy provides

users with four default metrics and null models with automated

statistical analyses. Optimized for high performance in large-

scale studies, NetMedPy enhances the robustness and scalability

of Network Medicine research, facilitating the discovery of

mechanisms of action and prioritizing hypotheses for experimental

validation.

NetMedPy

The workflow of NetMedPy, as illustrated in Figure 1A, involves:

1) loading the interactome, 2) computing and storing the distance

matrix induced by a selected metric, 3) loading the desired

GDAs and drug targets, and 4) calculating the selected scoring

functions (proximity, separation) with the null models of choice.

The pipeline output can be further used in downstream analyses.

NetMedPy supports weighted and unweighted networks through

a Graph object in NetworkX, a widely used library for network

analysis. GDAs are entered using a dictionary format, where

keys represent disease names and values are lists of associated

genes. A similar approach is used for drug targets. The results

are then returned in dictionaries, detailing the statistical analysis

performed for proximity and separation. For large-scale screening

studies, the output is stored in tabular form using Pandas

DataFrames.

NetMedPy offers a comprehensive suite of metrics, including

shortest paths (Menche et al., 2015), random walks (Masuda

et al., 2017), biased random walks (Erten et al., 2011),

communicability (Estrada and Hatano, 2008), and user-defined

options (Supplementary Information SIII). This wide range of

metrics allows researchers to tailor their analysis to the specific

requirements of various biological questions. The ability to

define custom metrics further empowers researchers to develop

specialized approaches for their unique research needs. By

applying ensemble learning techniques, researchers can also

combine the strengths of diverse metrics, enhancing the reliability

and depth of their conclusions. This integrated approach can

help prioritize experimental tests, improving cost-efficiency and

reducing the time and effort required for validation.

NetMedPy provides primary functions for the analysis of

disease modules, proximity, separation, and large-scale screening

studies, including:

• Modules: Given an interactome and a set of nodes, A,

NetMedPy extracts the largest connected component (LCC)

or subgraph formed by set A and calculates the statistical

significance of the LCC size (Supplementary Information SI.I).

• Proximity: The original proximity measure P (A,B) between

node sets A and B is asymmetric, meaning that P (A,B) ̸=
P (B,A). NetMedPy addresses this property by offering both

an asymmetric and symmetric proximity Ps(A,B) Z-score

(Supplementary Information SI.II).

• Separation: NetMedPy calculates separation (Supplementary

Information SI.II) and its statistical significance, expressed by

Z-Score and P-value.

• Screening: NetMedPy incorporates a screening function to

calculate network measures between sets of diseases and drugs.

The function runs in parallel, enhancing the computational

efficiency of multi-core processing capabilities.

Network Medicine leverages null models that generate

random samples as benchmarks. By comparing observed

network measures against these null hypotheses, researchers

can confidently assert the non-randomness of their findings,

thereby substantiating the biological relevance of the observed

relationships. NetMedPy enhances the robustness of this

statistical analysis by incorporating various null models:

Perfect Degree Match, Logarithmic Binning, Strength Binning,

Uniform Distribution, and user-provided models (Supplementary

Information SII). Each null model selects random node sets

differently, allowing researchers to account for diverse network

properties and biases that might influence the analysis.

Case Study with Vitamin D

To showcase NetMedPy, we evaluated the role of Vitamin D

for an array of 13 disease phenotypes and endophenotypes,

selected based on the strength of experimental evidence supporting

Vitamin D as a treatment. These categories include strong

support (Inflammation, Asthma, Coronary Artery Disease (CAD),

Vitamin D Deficiency, Chronic Obstructive Pulmonary Disease

(COPD), Rickets), medium support (Brain Neoplasms, Rett

Syndrome), and low support (Prader-Willi Syndrome, Factor

VII Deficiency, Beta Thalassemia, Fragile X Syndrome, Factor

IX Deficiency). We curated Vitamin D’s drug-target data (Piras

et al., 2024) (Supplementary Information SIV.II) and the GDAs

of each therapeutic area with and without experimental evidence

of Vitamin D modulation (Supplementary Information SIV.III).

Vitamin D is known to 1) reduce the activity of pro-inflammatory

cells, 2) regulate blood pressure, and 3) reduce proliferation and

boost apoptosis of cancer cells by regulating gene expression via

Vitamin D receptors. Leveraging an interactome that integrates

the protein-protein interactions reported in (Luck et al., 2020),

(Huttlin et al. [2021]), and (Maron et al., 2021) (Supplementary
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NetMedPy 3

Fig. 1: Overview and application of NetMedPy. A) Diagram of the NetMedPy pipeline. Users first load an interaction network,

drug targets, and GDAs. NetMedPy calculates the distance matrix induced by the chosen metric for all nodes in the network. Then users

set options for subgraph statistics, study type (e.g., proximity, separation), null model, and execution parameters. Visualization and

interpretation are performed outside of NetMedPy. B) Proximity between Vitamin D’s targets and various diseases. A large negative

Z-score indicates a statistically significant closeness between Vitamin D and the disease, while Z-scores close to zero are no different from

random. C) AMSPL distribution and proximity Z-scores for Vitamin D to Inflammation and Factor IX Deficiency, comparing Vitamin D’s

targets to disease genes (vertical lines) and degree-preserving log-binned null models (density plots). Inflammation shows a significantly

smaller AMSPL. D) Normalized AMSPL using different distance metrics: Shortest Path (blue), Random Walks (green), Biased Random

Walks (orange), and Communicability (pink). E) NetMedPy execution time (red) versus Proximity implementations found in other

packages (black; PMC11223884, PMC4740350, PMC9374494) for increasing gene set sizes. Dots represent time measurements, and

straight lines indicate quadratic functions fitted to the data. In each experiment, the proximity Z-Score was calculated using one hundred

random samples for illustration purposes. All calculations were performed with a 10-core Intel i9-12900H processor and 32 GB of RAM.

Information SIV.I) we calculate the proximity between Vitamin

D’s targets and each GDA set (Figure 1B).

Our findings reveal that the observed average minimum

shortest path length (AMSPL) between Vitamin D and
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inflammation is significantly smaller than expected when

considering node sets of the same size and comparable degree (Z-

Score = -7.64), confirming that Vitamin D influences inflammatory

processes. Conversely, Factor IX Deficiency, a Mendelian disorder,

is more distant from Vitamin D’s targets than expected by

chance (Z-Score = 1.34), providing a reasonable negative result

(Figure 1B-C). When evaluating the proximity values between

Vitamin D and all selected phenotypes, we find that inflammation

and related diseases such as asthma show the closest proximity

to Vitamin D. This result stands in contrast to diseases

with no known association to Vitamin D (e.g., Prader-Willi

Syndrome, Factor VII deficiency, Beta Thalassemia, Fragile X

Syndrome, Factor IX Deficiency), aligning with existing literature

(Figure 1B). Finally, the AMSPL-equivalents for four different

metrics display a robust ranking of the results under different

notions of distance (Figure 1D and Supplementary Figure S1).

NetMedPy Performance Evaluation and Comparison

Quantifying the statistical significance of network measures such

as proximity and separation in large networks is computationally

intensive, as it necessitates comparing selected node sets with

randomly generated ones to obtain Z-scores and empirical p-

values (Supplementary Information SI-SII). NetMedPy leverages

parallelism and precalculated distances between all pairs of nodes

to enhance performance. This optimization allows distances to be

computed once and reused multiple times, significantly improving

efficiency and facilitating large-scale screening studies. Figure 1E

illustrates the execution time of NetMedPy for calculating

proximity between random node sets of increasing size. Our

findings show that NetMedPy completes this task faster than

the regular proximity implementation, found in different Network

Medicine packages(Wang et al., 2022, Maier et al., 2024, Patten

et al., 2022), even accounting for the time required to pre-

calculate the distances. Consequently, as the number of disease

genes and drug-disease pairs increases, NetMedPy demonstrates a

substantial performance improvement.

Discussion

We developed NetMedPy, a user-friendly Python package designed

to optimize tools for Network Medicine applications. Tailored for

high-performance computing, NetMedPy efficiently handles large-

scale data, making it ideal for studies involving drug screening,

drug repurposing, and comorbidity identification. The package

offers functionalities for extracting the LCC and calculating

proximity and separation between node sets, with options for both

symmetric and asymmetric measures. Additionally, it supports

various null models to validate the statistical significance of

network metrics, ensuring robust analytical outcomes.

As in many areas of data science, the quality of predictions

in NetMedPy is highly dependent on the input data. Incomplete

annotations and erroneous associations can introduce variability in

the results. NetMedPy enables efficient robustness analyses under

perturbations to the input data (Supplementary Information

SVI), and also facilitates a wide range of studies in case-specific

weighted and unweighted networks. These include protein-protein

interaction networks for drug repurposing (Fang et al., 2021),

virus-host and drug-target networks (Zhou et al., 2020), as well

as recent advances in transformers-assisted network medicine

(Spector et al., 2025).

Choosing appropriate null models is essential in biological

network analysis to ensure meaningful results. NetMedPy

currently supports various null models, including degree-

preserving node randomization. These approaches maintain

the overall topology of the selected network while reassigning

biological entities to different nodes. Therefore, they effectively

preserve global network characteristics, such as degree-degree

correlations (assortativity or disassortativity), while retaining key

structural features of the selected nodes under study, including

node degrees and clustering, which are essential for biologically

meaningful comparisons. In biological networks, each edge carries

specific biochemical significance, reflecting distinct molecular

interactions and processes within the organism. In contrast,

randomizing edges would disrupt this biological context, breaking

meaningful associations and potentially resulting in artificially

extreme p-values. Such outcomes may not accurately represent

realistic biological scenarios, compromising the interpretability

of the results. Nevertheless, link randomization can be valuable

for assessing robustness under alternative hypotheses or for

introducing explicit topological perturbations (Zhou et al., 2023).

Future versions of NetMedPy may incorporate degree-preserving

edge randomization to natively support such analyses.

Furthermore, the versatility of NetMedPy extends its value to

numerous scientific fields that utilize networks. For example, it can

enhance social network analysis by investigating social interactions

and information dissemination. In epidemiology, NetMedPy can

analyze disease spread and the effectiveness of health interventions

within interconnected populations.

In conclusion, NetMedPy is a valuable tool for researchers,

enabling them to uncover new insights and address complex

problems with efficient network analysis techniques.

Supplementary data

Supplementary data are available at Bioinformatics online and on

the GitHub repository at https://github.com/menicgiulia/NetMedPy.
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network, drug targets, and GDAs. NetMedPy calculates the distance matrix induced by the chosen metric for 

all nodes in the network. Then users set options for subgraph statistics, study type (e.g., proximity, 
separation), null model, and execution parameters. Visualization and interpretation are performed outside of 

NetMedPy. B) Proximity between Vitamin D's targets and various diseases. A large negative Z-score 
indicates a statistically significant closeness between Vitamin D and the disease, while Z-scores close to zero 
are no different from random. C) AMSPL distribution and proximity Z-scores for Vitamin D to Inflammation 

and Factor IX Deficiency, comparing Vitamin D's targets to disease genes (vertical lines) and degree-
preserving log-binned null models (density plots). Inflammation shows a significantly smaller AMSPL. D) 
Normalized AMSPL using different distance metrics: Shortest Path (blue), Random Walks (green), Biased 
Random Walks (orange), and Communicability (pink). E) NetMedPy execution time (red) versus Proximity 

implementations found in other packages (black; PMC11223884, PMC4740350, PMC9374494) for increasing 
gene set sizes. Dots represent time measurements, and straight lines indicate quadratic functions fitted to 
the data. In each experiment, the proximity Z-Score was calculated using one hundred random samples for 
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illustration purposes. All calculations were performed with a 10-core Intel i9-12900H processor and 32 GB of 
RAM. 
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