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Network-based approach to prediction and
population-based validation of in silico drug
repurposing
Feixiong Cheng1,2, Rishi J. Desai 3, Diane E. Handy4, Ruisheng Wang4, Sebastian Schneeweiss3,

Albert-Laśzlo ́ Barabaśi1,2,5,6 & Joseph Loscalzo4

Here we identify hundreds of new drug-disease associations for over 900 FDA-approved

drugs by quantifying the network proximity of disease genes and drug targets in the human

(protein–protein) interactome. We select four network-predicted associations to test their

causal relationship using large healthcare databases with over 220 million patients and state-

of-the-art pharmacoepidemiologic analyses. Using propensity score matching, two of four

network-based predictions are validated in patient-level data: carbamazepine is associated

with an increased risk of coronary artery disease (CAD) [hazard ratio (HR) 1.56, 95%

confidence interval (CI) 1.12–2.18], and hydroxychloroquine is associated with a decreased

risk of CAD (HR 0.76, 95% CI 0.59–0.97). In vitro experiments show that hydroxy-

chloroquine attenuates pro-inflammatory cytokine-mediated activation in human aortic

endothelial cells, supporting mechanistically its potential beneficial effect in CAD. In sum-

mary, we demonstrate that a unique integration of protein-protein interaction network

proximity and large-scale patient-level longitudinal data complemented by mechanistic

in vitro studies can facilitate drug repurposing.
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A lthough investment in biomedical and pharmaceutical
research and development has increased significantly over
the past 20 years, the annual number of new treatments

approved by the US Food and Drug Administration (FDA)
has not significantly increased1. Among the reasons for this
shortcoming in contemporary drug development are a lack
of well-established predictive pharmacokinetics/pharmacody-
namics approaches, and concerning safety and tolerability profiles
for new chemical entities from preclinical studies to clinical
trials2. In addition to these well recognized explanations, another
important factor limiting more effective drug development may
be continued adherence to the classical (one gene, one drug, one
disease) hypothesis. Focusing on just single targets results in
failure to anticipate off-target toxicity, unintended beneficial
effects, or multiple target interactions leading to suboptimal
efficacy3,4. Without full knowledge of the broader network con-
text of the molecular determinants of disease and drug targets in
the protein–protein interaction network (human interactome),
investigators cannot develop meaningful approaches for effica-
cious treatment of complex diseases5.

Novel approaches, such as network-based drug-disease proxi-
mity, that shed light on the relationship between drugs (drug
targets) and diseases [molecular (protein) determinants in disease
modules]6–8 can serve as a useful tool for efficient screening of
potentially new indications for approved drugs with well-
established pharmacokinetics/pharmacodynamics, safety and
tolerability profiles, or previously unidentified adverse events9–12.
However, in order to prioritize the repurposed candidates or
suggest novel interventions based on drug-disease associations
identified by network-based approaches, rigorous validation is
mandatory. Since network-based drug repurposing focuses on
drugs that are already approved and are used in clinical practice,
such hypothesis testing is possible using large-scale patient-level
data collected during routine healthcare. Such data are regularly
used to generate actionable evidence regarding effectiveness,
harm, use, and value of medications to supplement evidence
generated in randomized controlled trials; these trials that lead to
drug approval are typically limited in scope owing to a relatively
modest study sample size, comparatively short follow-up time,
and frequent underrepresentation of the most relevant popula-
tions13. The unique strengths of routine healthcare data that
make them ideal for validating hypotheses generated by network-
based predictions include their provision of large patient popu-
lations useful for detecting small differences, and the availability
of a large number of patient factors recorded without any recall
bias, including demographics, comorbid conditions, and medi-
cation use, that allow for high-dimensional covariate adjustment
to minimize confounding14–16.

In this study, we developed a systems pharmacology-based
platform that quantifies the interplay between disease proteins
and drug targets in the human protein–protein interactome with
state-of-the-art pharmacoepidemiologic methods for hypothesis
validation using longitudinal data with over 220 million patients.
We followed this analysis with in vitro assays to test potential
drug mechanisms. As proof of the utility of the overall approach,
we focused on cardiovascular (CV) outcomes given their high
prevalence in the population, as an exemplary set of diseases with
which to identify associations between drugs used for non-cardiac
indications and CV outcomes. We demonstrate that an integrated
approach incorporating network proximity together with large-
scale patient longitudinal data and in vitro experimental assays
offers an effective platform by which to identify and validate
novel associations that can be used to minimize unanticipated
adverse drug effects and optimize drug repurposing. These results
suggest that this integrative approach can be generalized to other
drugs/disease combinations.

Results
An atlas of drug effects via network proximity. Our previous
studies have demonstrated that disease gene products (proteins)
are likely to cluster in the same network neighborhood or disease
module within the human protein–protein interactome6,17,18.
Drug targets representing nodes within molecular networks
are often intrinsically coupled in both therapeutic and adverse
effects. We, therefore, proposed that for a drug with multiple
targets to be on-target effective for a disease or to cause off-target
adverse effects (Supplementary Fig. 1a), its target proteins should
be within or in the immediate vicinity of the corresponding
disease module in the human interactome8,10. We chose CV
diseases as a test case of this principle due to their prevalence in
the population and their high morbidity and mortality. To
examine drug effects on CV diseases, we used a network proxi-
mity measure that quantifies the relationship between CV-specific
disease modules and drug targets in the human protein–protein
interaction (PPI) network (Supplementary Fig. 1b). To improve
the data quality of the human interactome, we used only five
types of experimental data: (a) binary PPIs obtained using sys-
tematic, unbiased, high-throughput yeast-two-hybrid (Y2H) sys-
tems19; (b) kinase-substrate interactions from literature-derived
low-throughput and high-throughput experiments; (c) binary
PPIs from three-dimensional (3D) protein structures; (d) sig-
naling networks from literature-derived low-throughput experi-
ments; and (e) literature-curated PPIs identified by affinity
purification followed by mass spectrometry (AP-MS), Y2H, and/
or literature-derived low-throughput experiments in which every
interaction is supported by multiple sources of experimental
evidence (Methods section). The updated human interactome
defined in this way includes 243,603 PPIs connecting 16,677
unique proteins (Supplementary Data 1). We also compiled 984
FDA-approved drugs by pooling the reported experimental drug-
target binding affinity data: median effective concentration
(EC50), median inhibitory concentration (IC50), inhibition con-
stant/potency (Ki), or dissociation constant (Kd), each ≤10
micromolar (µM) as a cutoff. We first calculated a z-score

z ¼ d�μ
σ

� �
for quantifying the significance of the shortest path

lengths d(s,t) between targets (t) of a drug (T) and proteins (s)
associated with the CV module (S) where the closest distance
between a drug and a disease d(S,T) is defined as:

d S;Tð Þ ¼ 1
kTk

X
t2T

mins2Sdðs; tÞ: ð1Þ

We constructed the reference distance distribution correspond-
ing to the expected network topological distance between two
randomly selected groups of proteins matched to size and degree
(connectivity) as the original disease proteins and drug targets in
the human interactome (cf. Methods). The z-score reduces the
study bias (e.g., hub nodes or those nodes with high connectivity)
in the shortest-path methods as described in our previous study10.
In total, we computationally investigated 984 FDA-approved
drugs [177 CV drugs and 807 non-CV drugs defined by first-level
Anatomical Therapeutic Chemical (ATC) classification codes]
and 23 types of CV outcomes (specific CV diseases) (Supple-
mentary Table 1). Relying on 177 FDA-approved CV drugs and
their known CV indications, we found that the area under the
receiver operating characteristic curve (AUC) is over 70% using
the network proximity measure (Supplementary Fig. 2), revealing
high accuracy for identifying the well-known drug-disease
relationships. In addition, we compared the network proximity
measure, closest (z-score), against three other network distance-
based measures between drug targets and the disease module10:
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(1) shortest, (2) kernel, and (3) centre. We found that the closest
distance-based z-score outperformed all three alternative network
distance measures (Supplementary Fig. 3). We, therefore, used the
closest distance-based z-score in the follow-up studies. Figure 1
illustrates the high-confidence predicted drug-CV disease asso-
ciations (z <−4.0) connecting 431 non-CV drugs to 22 specific
CV disease modules. We next proposed that this atlas of the
predicted associations between non-CV drugs and CV disorders
offers a useful resource with which to prioritize new CV

indications or highlight potential (unexpected) adverse cardiac
events for various approved drugs.

Validating possible causal associations in patient data. We
selected four target associations between non-CV drugs and CV
diseases identified by the network proximity measure (closest)
for hypothesis validation by analyzing over 220 million patients
in healthcare databases (Fig. 2). Target associations were further
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Fig. 1 The predicted drug-disease network. The high-confidence predicted drug-disease association network connects 22 types of cardiovascular disease
(outcomes) (red circles) and 431 FDA-approved non-cardiac drugs. The edges between drugs and diseases are weighted and highlighted by different color
representing the calculated z-score (Supplementary Data 2 and Methods section). Four selected drug-disease pairs, including carbamazepine-coronary
artery disease (CAD) with z=−2.36, hydroxychloroquine-CAD (z=−3.85), mesalamine-CAD (z=−6.10), and lithium-stroke (z=−5.97), tested in
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selected using subject matter expertise based on a combination
of factors: (i) strength of the network-based predicted associations
(a higher network proximity score in Supplementary Data 2);
(ii) novelty of the predicted associations through exclusion of
known adverse CV events of non-CV drugs (Methods section);
(iii) availability of sufficient patient data for meaningful evalua-
tion (exclusion of infrequently used medications); (iv) availability
of an appropriate comparator treatment that is used for the same
underlying (non-CV) indication as the drug of interest and pre-
dicted to have no association with the intended CV diseases via
network proximity analysis (defined reference groups or negative
controls); and (v) the fidelity with which the predicted CV dis-
eases were recorded in insurance claims databases. Applying
these criteria resulted in four network-based predictions: (1)
carbamazepine (z=−2.36) vs. levetiracetam (comparator con-
trol, z=−0.07), drugs normally used to treat epilepsy, with CAD;
(2) mesalamine (z=−6.10) vs. azathioprine (comparator control,
z=−0.09), drugs normally used to treat inflammatory bowel

disease, with CAD; (3) hydroxychloroquine (z=−3.85) vs.
leflunomide (comparator control, z=−1.87), drugs normally
used to treat rheumatoid arthritis, with CAD; and (4) lithium
(z=−5.97) vs. lamotrigine (comparator control, z= 0.19), drugs
normally used to treat bipolar disorder, with stroke.

Using two large US-based commercial health insurance claims
databases connected with the validated Aetion evidence plat-
form20, we next conducted four cohort studies to evaluate the
predicted associations based on individual level longitudinal
patient data and pharmacoepidemiologic methods, including a
new-user active comparator design, propensity score (PS)
adjustment for confounding, and multiple sensitivity analyses21.
Figure 2 summarizes the total patients included in the four
cohorts along with specific reasons for exclusion in the Truven
MarketScan and Optum Clinformatics databases. Overall, based
on more than 50 covariates included in the PS, we included:
(1) 76,045 carbamazepine initiators matched 1:1 to 76,045
levetiracetam initiators; (2) 27,305 mesalamine initiators matched

Truven MarketScan patient database: 173.1 million patients
Optum Clinformatics patient database: 55.1 million patients
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Fig. 2 Flow-chart of the pharmacoepidemiologic investigations using Truven MarketScan and Optum Clinformatics patient databases. AZA azathioprine,
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1:1 to 27,305 azathioprine initiators; (3) 37,795 hydroxychlor-
oquine initiators matched 1:1 to 37,795 leflunomide initiators;
and (4) 141,294 lithium initiators matched 1:1 to 141,294
lamotrigine initiators. Supplementary Tables S2–S5 demonstrate
the balance achieved in patient characteristics and outcome risk
factors between the two treatment groups compared via 1:1 PS-
matching. Table 1 shows the total number of person-years of
follow-up, total event counts (incident diseases) in the patient
groups, and incidence rates per 1000 person-years for the diseases
of interest (95% confidence interval [CI]) for each of the four
comparisons of interest stratified by data source.

Figure 3 summarizes the results after pooling the two patient
databases for each of the four comparisons before and after PS-
matching. In the primary analytical approach of censoring patient
follow-up time at discontinuation of the initial treatment (“as-
treated” approach), we observed that carbamazepine was
associated with a 56% increased risk [hazard ratio (HR) 1.56,
95% confidence interval (CI) 1.12–2.18] of CAD compared with
levetiracetam (Fig. 3a), and hydroxychloroquine (Fig. 3d) was
associated with a 24% reduced risk of CAD compared to
leflunomide (HR 0.76, 95% CI 0.59–0.97). Varying the follow-up
assumptions used in the following ways—(1) excluding the first
60 days of follow-up to reduce residual baseline confounding,
(2) truncating the follow-up to 1-year to minimize time-varying
confounding, and (3) continuing the follow-up for 1-year
regardless of treatment discontinuation under an intent-to-treat
(ITT) principle–resulted in estimates that were consistent with
the primary approach for both the carbamazepine (Fig. 3a) and
hydroxychloroquine analyses (Fig. 3d). Mesalamine vs. azathiopr-
ine (HR 1.15, 95% CI 0.55–2.42) and lithium vs. lamotrigine (HR
0.71, 95% CI 0.31–1.60) were not consistently associated
differentially with the risk of CAD or stroke (Fig. 3b, c and
Supplementary Figs. 4 and 5). Therefore, two of the four
predicted associations were validated by the large-scale patient
data to either decrease the risk of CAD (hydroxychloroquine) or
increase the risk of CAD (carbamazepine), supporting our
network-based prediction.

In vitro assay of hydroxychloroquine’s mechanism-of-action.
Figure 3d reveals that hydroxychloroquine is associated with a
24% reduced risk of CAD compared to leflunomide (HR 0.76,
95% CI 0.59–0.97). [These very robust data are in agreement with
a recent study showing that hydroxychloroquine decreases the
incidence of CV events in a small cohort of rheumatoid arthritis
patients22.] Hydroxychloroquine has been approved for the
treatment of malaria and rheumatoid arthritis for many years;
however, only recently have studies provided relevant mechan-
istic insights. Hydroxychloroquine accumulates intracellularly in
the endosomal/lysosomal compartment where its inhibitory
effects on Toll-like receptors 7 and 9 (TLR7 and TLR9) suppress
inflammatory responses23. We integrated drug targets and
disease proteins into the blood vessel-specific protein–protein
interaction network (cf. Methods) to identify the overlapping
pathways between hydroxychloroquine targets and CAD pro-
teins (Fig. 4a). Two potential pathways were inferred to be
involved in the protective effect of hydroxychloroquine in CAD:
(a) hydroxychloroquine may activate ERK5 (encoded byMAPK7)
to prevent endothelial inflammation via inhibition of cell
adhesion molecule expression24; and (b) hydroxychloroquine
may inhibit endosomal activation of NADPH oxidase in response
to pro-inflammatory agonists (TNF-α and IL-1β) and may
decrease production of pro-inflammatory cytokines in stimulated
immune cells25. Notably, adhesion molecules (ICAM-1 and
VCAM-1)26 and pro-inflammatory cytokines27 play essential
roles in CAD. Furthermore, a recent meta-analysis has shownT
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that elevated expression of TNF-α or IL-1β is significantly asso-
ciated with increased risk of CAD28. Thus, we sought to deter-
mine whether hydroxychloroquine has direct anti-inflammatory
effects on endothelial cells via these pathways as a potential
beneficial mechanism in CAD.

We pretreated human aortic endothelial cells with 10–50 µM
hydroxychloroquine and monitored the expression of VCAM1
and IL1B genes in the presence and absence of the cytokine TNF-
α. TNF-α (5 ng/ml) caused a robust increase in the expression of
VCAM1 and IL1B, and this pro-inflammatory effect was

significantly attenuated by all of the doses of hydroxychloroquine
tested (Fig. 4b). Similarly, hydroxychloroquine decreased inflam-
matory responses to 10 and 20 ng/ml TNF-α, as demonstrated by
its attenuation of TNF-α-mediated VCAM-1 and IL-1β protein
upregulation (Fig. 4c).

Patients with rheumatoid arthritis are reported to have
increased endothelial dysfunction29 that correlates with cardio-
vascular disease risk30. Therefore, we next tested whether
hydroxychloroquine altered TNF-α-induced suppression of
NOS3 expression31, a known marker of endothelial (dys)
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Fig. 3 Hazard ratios and 95% confidence intervals for four cohort studies. Four cohort studies were performed using the pooled data from four drug pairs
(a-d) Truven MarketScan and Optum Clinformatics databases (Methods section). In the primary analysis approach (as-treated), follow-up was stopped
upon discontinuation of the index medication. Follow-up assumptions were varied in three sensitivity analyses to: (1) exclude the first 60 days of follow-up
to reduce unmeasured baseline confounding, (2) truncate the follow-up to 1-year to minimize time-varying confounding, and (3) continue the follow-up for
1-year regardless of treatment discontinuation under an intent-to-treat (ITT) principle. Propensity score (PS) matching accounted for >50 relevant patient
characteristics; all analyses were conducted separately in two databases and results were pooled using the DerSimonian and Laird random effects model
with inverse variance weights. * In the as-treated approach, the follow-up was stopped if patients either filled a prescription for a drug in the other exposure
group or discontinued the index exposure. ** In the ITT analysis, patients were followed in their index exposure group regardless of treatment change or
discontinuation for up to 365 days
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function. NOS3 encodes the endothelial nitric oxide synthase
enzyme, which, via its synthesis of nitric oxide, regulates
vascular tone, impairs platelet activation, and impairs adhesion
molecule expression contributing to an anti-inflammatory
(and anti-atherogenic) phenotype. TNF-α significantly sup-
pressed NOS3 expression, and 50 µM hydroxychloroquine
significantly attenuated (reversed) this suppression (Fig. 4d).
Taken together, network proximity analysis of the human
interactome not only identified a novel protective effect of

hydroxychloroquine in CAD, but also offered testable
hypotheses by which to elucidate the molecular mechanism(s)
of its protective effect.

Although there may be additional pathways for the beneficial
actions of hydroxychloroquine that are outside of the blood-
vessel-specific protein–protein interaction network, these experi-
mental findings suggest that hydroxychloroquine has a protective,
anti-inflammatory effect on endothelial cells, consistent with its
potential beneficial effect in CAD.
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Fig. 4 Experimental validation of hydroxychloroquine’s likely mechanism-of-action in coronary artery disease (CAD). a A highlighted subnetwork shows the
inferred mechanism-of-action for hydroxychloroquine’s protective effect in CAD by network analysis. A network analysis was designed to meet four
criteria: (1) the shortest paths from the known drug targets (TLR7 and TLR9) in the human protein–protein interaction network; (2) the blood vessel-
specific gene expression level based on RNA-seq data from Genotype-Tissue Expression database; (3) known CAD or cardiovascular disease (CVD) gene
products (proteins); and (4) literature-reported in vitro and in vivo evidence. There are three proposed mechanisms: (i) ERK5 (encoded by MAPK7)
activation prevents endothelial inflammation via inhibition of cell adhesion molecule expression (VCAM-1 and ICAM-1), (ii) suppression of pro-
inflammatory cytokines (TNF-α and IL-1β), and (iii) improvement in endothelial dysfunction via enhanced nitric oxide production by endothelial nitric oxide
synthase (NOS3). The node size scales show the blood vessel-specific expression level based on RNA-seq data from Genotype-Tissue Expression database
(Methods section). b, d Endothelial cells were pretreated with various concentrations of hydroxychloroquine (HCQ, 10–50 µM) for 1 h prior to 24 h
incubation with 5 ng/ml TNF-α. qRT-PCR was used to monitor gene expression of inflammatory genes (b) VCAM1 and IL1B; and (d) NOS3. Expression of
the β-actin gene was used as an internal standard. VCAM1: no HCQ, no TNF, n= 8; TNF; n= 8; TNF+ 10 μM HCQ, n= 5; TNF+ 20 μM HCQ, n= 4;
TNF+ 30 μM HCQ, n= 3; TNF+ 50 μM HCQ, n= 6. IL-1β and NOS3: no HCQ, no TNF, n= 9; TNF; n= 9; TNF+ 10 μM HCQ, n= 5; TNF+ 20 μM HCQ,
n= 5; TNF+ 30 μM HCQ, n= 4; TNF+ 50 μMHCQ, n= 6. Error bars are standard deviations. *significantly different from TNF-α with no HCQ, p < 0.05 as
determined by post-hoc testing using the Student's Newman–Keuls test. c Western blot of VCAM-1, IL-1β, and actin. Endothelial cells were pretreated
with 10 µM hydroxychloroquine for 1 h prior to 24 h incubation with 5, 10 or 20 ng/ml TNF-α. Each condition was tested six times; shown are
representative blots

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05116-5 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2691 | DOI: 10.1038/s41467-018-05116-5 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Discussion
We have demonstrated that an integrated, mechanism-based
human protein–protein interactome strategy can successfully
uncover novel drug-disease indications, undesirable side effects,
and potential mechanisms for these actions of approved drugs,
addressing a crucial issue in drug development and patient care.
We showed that our network framework yielded over 70%
accuracy for identification of well-known drug indications (Sup-
plementary Fig. 2). Specifically, our network-prediction and
pharmacoepidemiological analysis reveal that carbamazepine is
associated with an increased risk of CAD compared with leve-
tiracetam, which we are able to validate robustly in large-scale
patient data (HR 1.56, 95% CI 1.12–2.18, Fig. 3a). Carbamazepine
is a first-line widely used anticonvulsant for the treatment of
epilepsy and pain associated with trigeminal neuralgia, and works
via inhibition of sodium channel protein type 5 subunit alpha
(SCN5A)32 and ATP-sensitive potassium (KATP) channels33.
Previous clinical studies have suggested that carbamazepine
aggravates high-grade heart block34 and is associated with various
cardiovascular risk factors35, consistent with our observations.
Moreover, recent genetic studies have shown that mutations in
SCN5A and KATP channel genes are associated with structural
heart disease36 and adverse cardiac events37,38. Thus, it is
mechanistically feasible that inhibition of SCN5A and KATP
channel activities by carbamazepine may be associated with the
increased risk of CV diseases. Further studies will be needed to
provide experimental and clinical validation of this conclusion.

Pharmacoepidemiologic analyses from the two patient data-
bases revealed an inconsistent association of lithium vs. lamo-
trigine on the risk of stroke: a null result (HR 1.02, 95% CI
0.79–1.33, Supplementary Fig. 4) in the Truven MarketScan
database and a 52% reduced risk of stroke (HR 0.48, 95% CI
0.25–0.93, Supplementary Fig. 5) in the Optum Clinformatics
database. Recent studies have shown the potentially protective
effect of lithium in stroke39. Thus, to explore the effect of lithium
in stroke further, we examined the potential molecular mechan-
ism of lithium in the CV system via network analysis and in vitro
assays of lithium exposure in cultured human aortic endothelial
cells (Supplementary Fig. 6). We found a subnetwork of stroke
genes and genes up- or down-regulated by lithium (Supplemen-
tary Fig. 6a) that map to pathways involved in the production of
nitric oxide, which not only has anti-thrombotic effects but also
vascular and neural protective effects in the central nervous
system; however, our subsequent analysis in human aortic
endothelial cells suggested that lithium may attenuate activation
of these protective pathways (Supplementary Figs. 6b–e). In vitro
assay results are consistent with a recent study that maternal use
of high-dose lithium during the first trimester is associated with
an increased risk of cardiac malformation in the foetus40. Thus,
our findings suggest that larger clinical trials and additional
mechanistic studies may be necessary to clarify lithium’s action in
stroke prevention in a broad population or a well-defined sub-
population.

Although patients with rheumatoid arthritis on hydroxy-
chloroquine had a lower risk of CAD than rheumatoid arthritis
patients treated with leflunomide, the ability of hydroxy-
chloroquine to improve outcomes in patients with other under-
lying risk factors for CAD is unclear. Nonetheless, several CVD
and CAD proteins are found within the hydroxychloroquine
subnetwork (Fig. 4a). Furthermore, hydroxychloroquine has anti-
inflammatory properties41,42, and inflammation is a known major
contributor to CAD43. In a mouse model of atherosclerosis,
hydroxychloroquine was found to have anti-atherogenic and
vasculoprotective effects44, suggesting its utility in preventing
vascular remodeling. Herein, our in vitro assays reveal that
hydroxychloroquine attenuates the pro-inflammatory cytokine-

mediated activation of human aortic endothelial cells (Fig. 4b–d)
by reducing the expression of adhesion molecules, decreasing the
production of cytokines, and attenuating the suppression of
endothelial nitric oxide synthase. Although additional mechan-
istic studies are necessary to confirm the beneficial effects of
hydroxychloroquine on endothelial function in the context of
CAD, the anti-inflammatory properties of hydroxychloroquine
on other cell types is well known. In rheumatoid arthritis and
systemic lupus erythematosus, hydroxychloroquine has been
suggested to mediate its anti-inflammatory action by inhibiting
the activation of TLR7 and TLR9 that reside in endosomal/
lysosomal compartments23. Recent evidence suggests that inter-
nalization of TNF-α receptors and other plasma membrane
receptors to endosomal compartments may be a necessary step in
the activation of certain ligand-induced signaling pathways45.
Thus, hydroxychloroquine, which accumulates in endosomes,
may interfere with the inflammatory actions of multiple types of
membrane receptors.

In support of an effect of hydroxychloroquine on endosomal
signaling, assembly of NADPH oxidase 2 complexes in the
endosome in response to pro-inflammatory stimuli was atte-
nuated by hydroxychloroquine to reduce superoxide generation
in monocytes46. Additionally, in a monocytic cell line, hydroxy-
chloroquine attenuated TNF-α and IL6 expression in response to
IL-1β and TNF-α stimulation, respectively46. Interestingly, a
treatment trial (the OXI trial) has recently been initiated to assess
the efficacy of hydroxychloroquine in preventing recurrent CV
events in patients with myocardial infarction47 owing to its anti-
inflammatory effects as well as its additional biological actions48.
The results of this ongoing trial may provide further insights into
the cardioprotective actions of hydroxychloroquine in a subset of
non-rheumatoid arthritis patients.

Our pharmacoepidemiologic method, relying on very large
patient-level longitudinal data, has several advantages. First, we
used two large population-based cohorts to validate the hypo-
thesized associations, which allowed for statistically robust testing
of small effect sizes in relatively small treatment subpopulations.
Pharmacy dispensing data from insurance claims were used to
define exposure to medications. This approach is generally con-
sidered to be more accurate than self-reported drug use or
medical records49. We also applied a large number of covariates
to account for confounding in our studies using the recom-
mended approach of PS-matching for improving inference from
large healthcare databases, which are increasingly recognized by
regulators and payers as a vital source of information through
which to understand the safety and effectiveness of medications
used in routine care50. We conducted multiple sensitivity analyses
to rule out chance findings and attempted to replicate our ana-
lyses in a second large database. However, there remain certain
limitations of this approach. Insurance claims data are primarily
collected for administrative purposes and do not contain detailed
clinical information; therefore, residual confounding is possible
despite high-dimensional covariate adjustment. We defined out-
comes purely by using a claims-based definition; although, we
used validated and specific codes, endpoints could not be adju-
dicated. Finally, our databases did not contain information on
patient ethnicity, which is also a limitation. Replication of the
associations identified in this study using databases that contain
information on ethnicity is recommended in future studies to rule
out treatment effect heterogeneity by ethnicity.

In summary, we demonstrated that an integration of molecular
network-based approaches and state-of-the-art pharmacoepide-
miologic methods can facilitate rational strategies for drug
repurposing and the detection of side effects. Specifically, we
observed that hydroxychloroquine was associated with 24%
reduced risk of CAD compared with leflunomide using large-
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scale patient data, effects that are supported by mechanistic
in vitro data. In addition, carbamazepine was associated with a
56% increased risk of CAD compared with levetiracetam. We
believe that the approach presented here, if broadly applied,
would significantly catalyze innovation in drug discovery and
development.

Methods
Building the human protein–protein interactome. To build the comprehensive
human protein–protein interactome as currently available, we assembled 15
commonly used databases with multiple types of experimental evidence and the in-
house systematic human protein–protein interactome: (1) binary PPIs tested by
high-throughput yeast-two-hybrid (Y2H) systems in which we combined binary
PPIs tested from two publicly available high-quality Y2H datasets19,51 and one
dataset available from our website: http://ccsb.dana-farber.org/interactome-data.
html; (2) kinase-substrate interactions from literature-derived low-throughput and
high-throughput experiments from KinomeNetworkX52, Human Protein Resource
Database (HPRD)53, PhosphoNetworks54,55, PhosphositePlus56, dbPTM 3.057, and
Phospho.ELM58; (3) carefully literature-curated PPIs identified by affinity pur-
ification followed by mass spectrometry (AP-MS), and from literature-derived low-
throughput experiments from BioGRID59, PINA60, HPRD53, MINT61, IntAct62,
and InnateDB63; (4) high-quality PPIs from three-dimensional (3D) protein
structures reported in Instruct64; and (5) signaling networks from literature-
derived low-throughput experiments as annotated in SignaLink2.065. The genes
were mapped to their Entrez ID based on the National Center for Biotechnology
Information (NCBI) database66 as well as their official gene symbols based on
GeneCards (http://www.genecards.org/). Inferred data, such as evolutionary ana-
lysis, gene expression data, and metabolic associations, were excluded. The updated
human interactome constructed in this way includes 243,603 protein–protein
interactions (PPIs) (edges or links) connecting 16,677 unique proteins (nodes)
(Supplementary Data 1), representing over 40% greater size compared to our
previously utilized human interactome6.

Collection of human cardiovascular disease genes. We began with ~50 types of
CV events defined by Medical Subject Headings (MeSH) and Unified Medical
Language System (UMLS) vocabularies67. For each CV event, we collected disease-
associated genes from 8 commonly used data sources: The OMIM database (Online
Mendelian Inheritance in Man)68, The Comparative Toxicogenomics Database69,
HuGE Navigator70, DisGeNET71, ClinVar72, GWAS Catalog73, GWASdb74, and
PheWAS Catalog (phewas.mc.vanderbilt.edu)75. We annotated all protein-coding
genes using gene Entrez ID, chromosomal location, and the official gene symbols
from the NCBI database66. Here we selected CV events with at least 10 disease-
associated genes in the human interactome, resulting in 23 types of CV events
(Supplementary Table 1).

Construction of drug-target network. We assembled the physical drug-target
interactions on FDA-approved drugs from 6 commonly used data sources, and
defined a physical drug-target interaction using reported binding affinity data:
inhibition constant/potency (Ki), dissociation constant (Kd), median effective
concentration (EC50), or median inhibitory concentration (IC50) ≤10 µM. Drug-
target interactions were acquired from the DrugBank database (v4.3)76, the
Therapeutic Target Database (TTD, v4.3.02)77, and the PharmGKB database
(30 December 2015)78. Specifically, bioactivity data of drug-target pairs were col-
lected from three commonly used databases: ChEMBL (v20)79, BindingDB
(downloaded in December 2015)80, and IUPHAR/BPS Guide to PHARMACOL-
OGY (downloaded in December 2015)81. After extracting the bioactivity data
related to the drugs from the prepared bioactivity databases, only those items
meeting the following four criteria were retained: (i) binding affinities, including Ki,
Kd, IC50, or EC50 ≤10 μM; (ii) proteins can be represented by unique UniProt
accession number; (iii) proteins are marked as reviewed in the UniProt database82;
and (iv) proteins are from Homo sapiens.

Description of network proximity. Given S, the set of disease proteins, T, the set
of drug targets, and d(S,T), the closest distance measured by the average shortest
path length between nodes s and the nearest disease protein t in the human
protein–protein interactome is defined as: d S;Tð Þ ¼ 1

kTk
P
t2T

mins2S dðs; tÞ. To
evaluate the significance of the network distance between a drug and a given
disease, we constructed a reference distance distribution corresponding to the
expected distance between two randomly selected groups of proteins of the same
size and degree distribution as the original disease proteins and drug targets in the
network. This procedure was repeated 1000 times. The mean �d and s.d. (σd) of the
reference distribution were used to calculate a z-score (zd) by converting an
observed (non-Euclidean) distance to a normalized distance.

Pharmacoepidemiologic methodology. We conducted observational cohort stu-
dies using two large US-based health insurance claims databases: (1) Truven

MarketScan (2003–2014), and (2) Optum Clinformatics (2004–2013). These data
sources contain comprehensive longitudinal information on patient demographics,
coded in-patient and out-patient diagnoses and procedures, and outpatient pre-
scription dispensing for their enrollees. Use of the de-identified database was
approved by the Institutional Review Board of Brigham and Women’s Hospital,
Boston, MA.

We identified patients 18 years or older who initiated treatment with the drug of
interest after 180 days of continuous enrollment83. The date on which this new
prescription was filled was defined as the index date. We further applied study-
specific exclusion criteria (summarized in Fig. 2) in the 180-day pre-index period to
include homogeneous groups of patients in each comparison and focused on
incident events. The follow-up began on the day after the index date. For the
primary analysis, we used an as-treated follow-up approach in which the follow-up
was stopped if patients either filled a prescription for a drug in the other exposure
group or discontinued the index exposure. Discontinuation was defined as no
record of a subsequent prescription of the index medication for 60 days after
accounting for the days’ supply of exposure provided by the most recent
prescription. We varied the follow-up approach to evaluate the robustness of our
results in three sensitivity analyses. First, we did not attribute the outcome
occurring in the first 60-days post-index to the index treatment to avoid the
possibility of unmeasured baseline confounding. Second, we truncated the follow-
up to a maximum of 365-days to limit the potential for time-varying confounding.
Finally, we conducted an intention-to-treat (ITT) equivalent analysis in which
patients were followed in their index exposure group regardless of treatment
change or discontinuation for up to 365 days. In all of the approaches, the follow-
up was truncated at the first outcome occurrence, health insurance disenrollment,
death, or the most recent date of data availability.

The outcome of CAD was identified as a composite endpoint of hospitalization
for myocardial infarction as the primary discharge diagnosis or a
coronary revascularization procedure. The ICD-9 codes and CPT codes used to
identify these outcomes have been found to have >90% positive predictive value
(PPV) in administrative claims databases84,85. The outcome of stroke was identified
using hospitalization claims where ischemic stroke or transient ischemic attack was
recorded as the primary discharge diagnosis. The ICD-9 codes used to identify this
outcomes have been found to have 96% positive predictive value (PPV) in
administrative claims databases86.

We identified the large number of covariates, which were measured in the 180-
day baseline period preceding each patient’s index date, in each of the four studies
to account for confounding. These variables were specifically selected to address
clinical scenarios evaluated in each study. For example, in the study of
inflammatory bowel disease (IBD) treatments (mesalamine vs. azathioprine), we
measured and accounted for IBD severity-related variables, such as diagnosis for
active fistula formation or internal penetrating disease, obstructing or stricturing
disease, and intra-abdominal surgical procedures. Additionally, patient
demographics (age and gender), risk factors for cardiovascular diseases (e.g.,
hypertension, hyperlipidemia, diabetes, cardiovascular medication use), and
markers of contact with the healthcare system (e.g., number of emergency
department visits, number of distinct prescription medications used) were
measured in all four studies. Please refer to Supplementary Tables 2–5 for a full list
of covariates included in each study.

We used propensity score (PS) methods to account for potential confounding87.
PSs were defined as the predicted probability of receiving the treatment of interest
(vs. the comparator) conditional upon patients’ covariate constellations and were
calculated using multivariable logistic regression models, including the covariates
described above as independent variables. Initiators of each exposure of interest
were matched to initiators of the reference exposure based on their PS in 1:1 ratio
using a nearest-neighbor algorithm within a caliper of 0.05 on the probability
scale88. Cox-proportional hazards models were used to estimate the adjusted
hazard ratios (HR) between the treatment of interest and the risk of outcome
before and after PS-matching. All analyses were conducted separately in the two
data sources to avoid any potential effect of differential measurement of study
variables across the data sources on the comparative estimates. The results were
presented after pooling estimates from the two databases using the DerSimonian
and Laird random effects model with inverse variance weights89. To address the
possibility of population-overlap, we corrected the variance of our pooled hazard
ratios assuming 20% overlap between the two databases as follows:

bσ2corrected ¼ P2
i¼1

w2
i
bσ2 i þ w1w2

n1
bσ21þn2

bσ22
n1þn2

poverlap;bσ2corrected ¼ corrected variance;
wi ¼ inverse variance weight for database i;bσ2 i ¼ variance of the estimate fromdatabase i;
ni ¼ sample size of the study in database i;
poverlap ¼ 0:2:

All statistical analyses were conducted on the Aetion Platform version 2.1.2
using R (version 3.1.2), which has been validated against the FDA Sentinel system
and randomized control trials20.

Tissue-specific subnetwork analysis. We downloaded the RNA-seq data
(RPKM value) of 32 tissues from GTEx V6 release (accessed on 01 April 2016,
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https://gtexportal.org/home/). For each tissue (e.g., blood vessel), we regarded those
genes with RPKM ≥1 in >80% of samples as tissue-expressed genes and the
remaining genes as tissue-unexpressed. To quantify the expression significance of
tissue-expressed gene i in tissue t, we calculated the average expression 〈E(i)〉 and
the standard deviation δEðiÞ of a gene’s expression across all considered tissues90.
The significance of gene expression in tissue t is defined as zE i; tð Þ ¼
E i; tð Þ � hE ið Þið Þ =δEðiÞ. For stroke and CAD, we built a blood vessel-specific
protein–protein interaction network by comparing genome-wide expression pro-
files of blood vessels to 31 other different tissues from GTEx.

In in vitro assays, human aortic endothelial cells (Lonza) were passaged in
EGM-2 (Lonza) with the addition of hydroxychloroquine (Fig. 4) or lithium
chloride (Supplementary Fig. 6) at the doses and times indicated. To assess VEGF-
mediated activation of Akt/GSK/eNOS signaling, cells were cultured 24 h in EBM-2
with 0.1% fetal bovine serum in the presence of absence of lithium chloride prior to
the addition of VEGF at 50 ng/ml for the times indicated (Supplementary Fig. 6).
One hour after cells were exposed to hydroxychloroquine (10–50 μM), TNF-α
(5–20 ng/ml) was added to the media. Cells were collected 24 h following TNF-α
addition for RNA or protein analysis (Fig. 4).

RNA was collected from cells with the RNeasy kit (Qiagen) using the
optional DNase I digestion. cDNA was synthesized from 0.5 μg of RNA using
oligo dT primers and the Advantage RT-for-PCR kit (Clontech). Relative RNA
levels were measured by quantitative RT-PCR method using the ΔΔCt method
of analysis. β-Actin was used as the endogenous control. The following TaqMan
probes (Thermo Fisher) were used for gene expression analysis: VCAM1,
Hs00365485_m1; IL1B, Hs01555410_m1; NOS3, Hs01574659_m1 and ACTB,
Hs99999903_m1.

Radioimmunoprecipitation assay (RIPA) lysis buffer was supplemented with
protease and phosphatase inhibitors (Calbiochem) and used to collect cell extracts.
Cell lysates were separated on 4–15% polyacrylamide gradient gels (Biorad), and
transferred to polyvinylidene fluoride (PVDF) membranes. Antibodies were
obtained from Cell Signaling. VCAM-1 was detected by western blotting using an
sc-8304 antibody (Santa Cruz) at a 1:4000 dilution; IL-1β actin was detected using a
1:1000 dilution of antibody #12703 (Cell Signaling); and actin was detected using a
1:4000 dilution of antibody #4970 (Cell Signaling). A secondary anti-rabbit-HRP
antibody (Cell Signaling, #7074) was used at 1:2000 together with the ECL western
blotting detection reagents from GE Healthcare. Blots were exposed to X-ray film,
and the Biorad ChemiDoc Touch Imaging system was used to generate images. For
western blot experiments designed to analyze the effects of hydroxychloroquine,
each condition was tested in 6 independent experiments. Uncropped scans of the
blots used in Fig. 4c are included in Supplementary Fig. 7.

Code availability. The toolbox package for the network proximity calculation can
be downloaded at github.com/emreg00/toolbox.

Data availability. The human publicly available protein–protein interactome used
in this study is freely available as a supplement to this manuscript (Supplementary
Data 1). The unpublished binary human protein–protein interactions can be
accessed at http://ccsb.dana-farber.org/interactome-data.html. The global predicted
z-scores for 984 FDA-approved drugs and 23 types of cardiovascular events (dis-
eases) via the network proximity approach are freely available in Supplementary
Data 2. All other relevant data are available from the authors.
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