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High-throughput technologies, offering an unprecedented wealth
of quantitative data underlying the makeup of living systems, are
changing biology. Notably, the systematic mapping of the relation-
ships between biochemical entities has fueled the rapid develop-
ment of network biology, offering a suitable framework to describe
disease phenotypes and predict potential drug targets. However,
our ability to develop accurate dynamical models remains limited,
due in part to the limited knowledge of the kinetic parameters
underlying these interactions. Here, we explore the degree to which
we can make reasonably accurate predictions in the absence of the
kinetic parameters. We find that simple dynamically agnostic
models are sufficient to recover the strength and sign of the
biochemical perturbation patterns observed in 87 biological models
for which the underlying kinetics are known. Surprisingly, a simple
distance-based model achieves 65% accuracy. We show that this
predictive power is robust to topological and kinetic parameter
perturbations, and we identify key network properties that can
increase up to 80% the recovery rate of the true perturbation
patterns. We validate our approach using experimental data on the
chemotactic pathway in bacteria, finding that a network model of
perturbation spreading predicts with ∼80% accuracy the direction-
ality of gene expression and phenotype changes in knock-out and
overproduction experiments. These findings show that the steady
advances in mapping out the topology of biochemical interaction
networks opens avenues for accurate perturbation spread model-
ing, with direct implications for medicine and drug development.

biological networks | perturbation patterns | topological models |
chemotaxis

In the past decade we have witnessed great progress toward the
systematic and comprehensive mapping of the physical inter-

actions between the biochemical entities that make up the cells
that together represent the human interactome (1–3). These ad-
vances have fueled the rapid development of network biology as a
suitable framework to describe and understand cellular processes
and how their collective perturbations affect disease states (1, 4–
8). The underlying data fueling these advances include but are not
restricted to protein–protein interactions, gene regulation, meta-
bolic reactions, and kinase–substrate interactions. Through the
aggregation of systematic and literature-derived interactions from
multiple resources, the human interactome covers today 170,000+
physical interactions between ∼14,000 biochemical entities (7).
Complementing this wealth of the interaction data, a massive
amount of data are routinely generated at the miRNA, mRNA,
and protein level through large-scale measurements of their
abundance in various cell types, organisms, and conditions popu-
lating databases such as Gene Expression Omnibus (9).
From the knowledge of the interactome, the goal of network

biology is to quantify and predict the spread of perturbations
across the subcellular network. Such perturbation patterns are of
crucial importance for network medicine, helping us understand
the differential expression patterns observed in disease states.
Moreover, being able to prioritize the effect of biological pertur-
bations in silico is key given the cost, time, and difficulty to obtain

such data through perturbation experiments, especially for human
subjects. However, while the coverage of the interactome is increasing
steadily, network biology continues to lack a general quantitative
dynamical framework for such predictive modeling. This is in part
due to the rarity of large-scale measurements of the kinetic param-
eters necessary to populate the kinetic models of all pathways (10,
11). Moreover, the degree of reproducibility of the measured kinetic
parameters varies wildly between in vitro and in vivo experiments
(12). Other approaches pertaining to the global fitting of kinetic
parameters (13, 14) by optimizing the model agreement to available
data often yield large parameter uncertainties (15, 16). To bypass the
need of a full knowledge of kinetic parameters, other studies have
investigated the interplay between generic dynamical models and
topological structure in the context of biological networks (17, 18).
These studies have focused on retrieving global perturbation statis-
tical properties from microscopic models (17), or retrieving the most
probable underlying dynamical model from perturbation statistics
(18). However, such universal insights are of limited predicting power
when confronted with small-size biological models with heteroge-
neous dynamics. Topological models have been proposed to study
perturbation spread in biological networks, such as Boolean networks
(19) or normalized-Hill models (NHMs) (20). However, such studies
are usually limited to a few well-described, small networks, not of-
fering a comprehensive picture of the accuracy of topological models
when applied to a large diversity of real-world biological networks.

Significance

The development of high-throughput technologies has allowed
mapping a significant proportion of interactions between bio-
chemical entities in the cell. However, it is unclear how much
information is lost given the lack of measurements on the kinetic
parameters governing the dynamics of these interactions. Using
biochemical networks with experimentally measured kinetic
parameters, we show that a knowledge of the network topol-
ogy offers 65–80% accuracy in predicting the impact of pertur-
bation patterns. In other words, we can use the increasingly
accurate topological models to approximate perturbation pat-
terns, bypassing expensive kinetic constant measurement. These
results could open new avenues in modeling drug action and in
identifying drug targets relying on the human interactome only.
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While we continue to lack large-scale measurements of kinetic
parameters, the literature has flourished with detailed biochemical
models of smaller scale. This is indicated by the growing body of
databases dedicated to the storage of biological models (21). For
example, the repository of computational models of biological
processes BioModels has seen a steady growth of its content over
the last decade and currently hosts over 1,200 models derived
directly from the literature (22). These models contain detailed
information on the pertinent biological components, their inter-
actions, and the differential equations describing their dynamics.
The fine-grained level of detail these biochemical models offer

opens an avenue to explore what level of description is necessary
(and sufficient) to reproduce the perturbation patterns character-
izing biological networks. In particular, previous work has shown
that some perturbation patterns are robust to significant changes in
kinetic parameters (23, 24). Indeed, only a small subset of these
model parameters affect the overall dynamics, a property known as
“sloppiness” (25). Accordingly, a simplified dynamical model con-
taining only a few parameters has been found to accurately predict
perturbation patterns obtained with a full biochemical model in the
case of the beta-adrenergic pathway (20). While these studies focus
on perturbations around a given steady state, their results have been
extended to the full dynamical landscape of biological networks
(26). Using random kinetic models, Huang et al. (26) have shown in
the cases of toggle-switch-like motifs and a 22-node biological
network that the stable states converge to experimentally observed
gene state clusters even when the parameters are strongly per-
turbed, suggesting that the dynamics is determined mainly by the
circuit topology, not by detailed kinetic parameters.
Here we develop DYNamics-Agnostic Network MOdels

(DYNAMO), an ensemble of perturbation propagation models that
rely on the network topology alone, and investigate the extent to
which the relative magnitude of biological perturbations can be re-
trieved when we lack knowledge of the kinetic parameters and the
details characterizing the dynamics of the underlying biochemical
process. Using an “onion-peeling” strategy across a variety of detailed
biochemical models, we systematically quantify the loss of accuracy of
the predicted perturbation patterns when we successively remove
information on the specifics of the dynamics. We show that an ac-
curate knowledge of the network topology captures on average 65%
of the influence patterns of the full biochemical model. We then
identify global network features that guarantee higher accuracies,
reaching up to 80% predictive power. Finally, the underlying mod-
eling framework and its level of accuracy are validated using per-
turbation experiments in the chemotaxis network in bacteria.

Results
Modeling Influence Patterns in Biological Networks. When the
concentration of a biological species is perturbed, the perturba-
tion can spread along physical interactions and reactions, reaching
other parts of the interactome (Fig. 1A). A purely topological
approach predicts a uniform spread across the network: First
neighbors are affected the most, followed by second neighbors,
and so on. In reality, each interaction is governed by a specific
dynamical equation with an associated set of parameters, allowing
for a precise computation of influence propagation. We must
consider the full dynamics to determine the precise direction and
the rate at which a perturbation spreads within the network.
Here we investigate the degree to which these dynamical patterns

can be retrieved from simple topological models. To that aim, we
explore several models of influence propagation with increasing
complexity, both in terms of accuracy of representation of the un-
derlying network topology and in terms of dynamical model used
(Fig. 1 B–E and Methods). We describe network topology in terms
of four layers of increasing complexity: (i) undirected network, (ii)
directed network, (iii) directed and signed (activating/inhibiting)
network, and (iv) directed, signed, and weighted network. To illus-
trate these layers, consider two interacting species A and B, where

an increase in A causes B to increase while a change in B does not
affect A. The four layers of complexity successively describe the
knowledge that (i) A and B interact (the existence of a link), (ii) A
causes a change in B’s concentration (direction of influence), (iii)
A causes a positive change in B’s concentration (sign), and (iv) A
causes a positive change in B’s concentration of a certain strength
(magnitude determined by the link weight parameters, like kinetic
constant). All this information can be extracted from the Jacobian
matrix of the system (Methods), which quantifies the degree to which
a change in A’s concentration causes a change in B’s concentration,
and the direction of the change (positive for an increase or negative
for a decrease). In this work, the Jacobian matrix is constructed
from the underlying systems of dynamical equations characterizing a
biological model. The signed Jacobian matrix is then used to re-
construct the underlying weighted topology of the biological models,
allowing us to capture topologies of type i to iii. The topology of type
iv, built from the full Jacobian matrix, contains the kinetic param-
eters information and hence corresponds to the full biochemical
model. Therefore, from the Jacobian matrix we extract both the
topology and perturbation dynamics of the studied models.
Given a network topology (wiring diagram), we wish to predict

how the perturbation of a given species propagates over the
network and the degree to which it affects all other species. Such
perturbation patterns—which we call influence patterns—are
usually represented by a sensitivity matrix— also called the linear
response matrix or correlation matrix in the literature (27)—
describing the change in the steady-state value xi of a node iwhen
the steady-state value xj of another node j is varied (27, 28):

Sij =
dxi
dxj

. [1]

If the dynamical equations are known, the sensitivity matrix can
be analytically derived using a perturbative framework (17, 27)
(Methods). In the following we refer to this exact sensitivity ma-
trix as the “(full) biochemical model,” which is the underlying
model from which it is computed (Fig. 1B).
We explore three models of decreasing complexity to compute

the sensitivity matrix using topological information only (Fig. 1
C–E). We refer to them as DYNAMO:

i) We start with a “propagation model” (Fig. 1C) proposed in
the context of disease gene prioritization, where “influence”
spreads from a set of known seed genes to highlight putative
disease genes (29). In our case, perturbed species are seed
genes and we want to prioritize the perturbation level of the
other species. In this model, the predicted perturbation of a
node is proportional to the degree-weighted sum of the per-
turbations of its neighbors, with a constant input term added
for the “source” node being perturbed. This propagation
model has been shown to outperform a random walk algo-
rithm in prioritizing disease genes across 1,369 diseases (29).

ii) The “distance model” (Fig. 1D) assumes that the strength of
a perturbation is inversely proportional to the network dis-
tance between a species and the source of perturbation, that
is, to the number of interactors it takes for one species to
affect the expression of another. Such a model is of great
interest since network distance in the interactome is a re-
markable predictor of similarity between diseases (7) and
drug–disease association (30).

iii) The minimal “first-neighbor” model (Fig. 1E) assumes that
the perturbation reaches only the direct neighbors of a per-
turbed node. Such direct neighbor influence, also called the
“local impact hypothesis” (31), has proven fruitful for disease
gene prediction (32) and is at the core of the minimum dom-
inating set (MDS) controllability approach, where a minimal
group of nodes is identified such that all other nodes in the
network have a direct interaction with an MDS node and can
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therefore be suitably “controlled” or influenced. Applied to
the protein–protein interactome, the resulting MDS proteins
were shown to be more essential and disease-related that non-
MDS proteins (33). As perturbations first impact the first
neighbors of the perturbed nodes, the first-neighbor model
is the most minimal approximation we explore.

In the following we apply these models to a diverse set of well-
characterized biochemical models.

Topological Models Accurately Predict Influence Patterns in Biological
Models. To test the validity of our findings on a large and diverse
set of biological networks, we start from the BioModels database,
a repository of curated biological, dynamical models (Methods). Bi-
ological models from this database are deposited in a standard format
allowing us to extract the underlying set of differential equations

describing their dynamics using libSBML (34) (Fig. 2A). From the
dynamical equations, we derive the influence networks by linking a
species i to a species j if a permanent change in the concentration of i
directly affects the steady-state concentration of species j. To do so,
we first compute the Jacobian matrix of the system. Writing the dy-
namical equations as _xj = fjðx1, . . . , xNÞ, where N describes the
number of species in the model and xi is the concentration of species
i, the Jacobian is Ji,j = ∂fj=∂xiðxpÞ, where xp is the steady state of the
system (Fig. 2B). The adjacency matrix A of the network is computed
as A= signðJTðxpÞÞ, where JT denotes the transpose of the Jacobian
of the system and the sign function applies element-wise (Methods
and Fig. 2C). In this framework, links with negative weights corre-
spond to inhibitory interactions while positive weights denote acti-
vating interactions. This approach is reminiscent of inference
networks (35), with link directions systematically reversed.

A Topology Dynamics

Model complexity

DYNAMICS-AGNOSTIC MODELS (DYNAMO)  

Topological information

First neighbors

Signed

Distance

Directed Undirected

In a purely topological view, 

propagates along the links

B Biochemical

Full model

AND

Kinetic parameters and 
compartmentalization 
can  create more 
complex propagation 
patterns, chanelling the 
spread of perturbations 
in selected directions

Propagation

DirectedSigned Undirected

C D E

Fig. 1. Influence patterns in biological networks. (A) The multiple interactions between cellular components form the subcellular network or interactome.
Mapping out the connections between these entities is the necessary first step to understanding how perturbations propagate in the network. On top of the
network structure, the dynamics is obtained when adding the knowledge of link direction, sign, and kinetic parameters. The resulting complete biochemical
model offers the best predictive model of influence propagation. (B–E) Schematic representations depicting the propagation of a perturbation in a biological
network according to different DYNAMO models of decreasing complexity. A detailed description of the models can be found in Methods.
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We implemented 87 models from BioModels (Dataset S1 and
ref. 22), selected with the criterion that the largest connected
component contains at least 10 species. For each model, bio-
chemical and DYNAMO sensitivities are computed as follows
(seeMethods for additional details). For biochemical models, the
sensitivity matrix is obtained via (17, 27)

S= ðI − JÞ−1D
 

1

ðI − JÞ−1
!
, [2]

where I is the identity matrix and J denotes the Jacobian matrix
of the system around steady state (Methods). For network models, we
start from spreading models i–iii from the DYNAMO model family
(Fig. 1 C–E). To compute the influence of a node on the other nodes
in the network, we start by assigning all nodes a weight zero. Given a
perturbation in node i (weight 1), the influence propagates to other

nodes j in the network, changing their weights according to various
proposed models. The matrix of influence for any pair ði, jÞ consti-
tutes the sensitivity matrix. The models are as follows:

i) Propagation: We extend the PRINCEmethodology to the case of
directed and signed networks (29) (Methods). Noting with W the
adjacency matrix, we define the diagonal matrix D1 such that
D1ði, iÞ is the sum of the absolute values of row i of W and the
matrix D2 such that D2ði, iÞ is the sum of the absolute values of
column i of W. We then compute the normalized propagation
weights W ′=D−1=2

1 WD−1=2
2 and the sensitivity matrix as

S= ð1− αÞðI − αW ′Þ−1, [3]

where α= 0.9 is a parameter characterizing the propagation
strength. This sensitivity matrix corresponds to the spread of
a perturbation of weight 1 to the rest of the network.

A

G

C

E F

H

B

D

Fig. 2. Topology predicts influence patterns in various biological networks. (A) We show a set of example differential equations describing biochemical dy-
namics. These equations involve the different variables from the model capturing the underlying biology of the problem. (B) We derive a Jacobian matrix J by
perturbing the differential equations around their steady state x*. (C) We convert the equations into an “influence network” where a link from species i to j is
created if i changes j concentration. This corresponds to the sign of the Jacobian matrix (Methods). (D) Schematic representation of the workflowwe used to assess
the ability of different models to predict the influence patterns. The calculation of the sensitivity matrices is explained in Methods. We use the Spearman cor-
relation coefficient to compare them with the biochemical, “ground truth” sensitivity matrix. (E) Bar plot showing the accuracy of different network models in
predicting the influence patterns across 87 models from BioModels (22). We compare sensitivity matrices of different models to the biochemical sensitivity matrix
using Spearman correlation, and we average the resulting correlations over all models. Errors bars correspond to SE. Red dashed line shows two SDs of the random
expectation averaged over all models. (F) Bar plot showing the accuracy of the signed network models in predicting the influence sign across 87 models from
BioModels (22). Errors bars correspond to SE. Gray bars show random expectation. (G) Accuracy of the network models as a function of the proportion of links
removed, averaged over the 87 models. Model names are abbreviated as follows: dist., distance; F.N., first neighbors; prop., propagation. Errors bars show SE.
(H) Correlation between properties (names on the left) and the propagation (d + s) model accuracy across 87 BioModels. Gray area shows the random expectation.
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ii) Distance: We assume that influence propagates to all nodes
in the same connected component as node i. In the directed
case, propagation is limited to outgoing links. Weights de-
crease with distance d as 1=ð1+ dÞ. We note that there is no
“signed” case for the distance model. Indeed, there are in
theory several shortest paths of the same length joining any
two nodes, and it is unclear which one to choose and how to
carry the edge signs from the source to the target.

iii) First neighbors: We assume that influence propagates only
to the direct neighbors of i, setting their weights to 1 (or
−1 for a negative interaction). For directed networks, only
outgoing links are considered.

The sensitivity matrices are compared with the one predicted
from the full biochemical model using Spearman correlation
(Fig. 2D and Methods). This nonparametric measure compares
the rank of the sensitivities, not their raw values, thus assessing if
the relative strength of perturbations is conserved across models.
We use the absolute value of the sensitivities as we focus on
recovering the strength of perturbations, not their sign. Fig. 2E
summarizes the obtained correlations averaged over all 87 bio-
chemical models (see SI Appendix, Fig. S1 for full distributions),
documenting a gradual decrease of the accuracy with the de-
creasing complexity of the network models. We find that the
propagation model, which relies on topological information only,
achieves 66% of accuracy (i.e., a Spearman correlation of
ρ= 0.66Þ in predicting the influence patterns when the network
includes direction and sign of the links. This is only slightly better
than in the unsigned case, though not significantly (65%, P =
0.4 under Student t test), but a dramatic improvement over the
undirected case (40%, P = 5.1e-13), indicating that capturing the
direction of flow is essential for predictive accuracy. In-
terestingly, the simpler distance model on a directed network
shows accuracy comparable to that of the best propagation
model on a directed signed network (63%). Again, the accuracy
greatly decreases in the undirected case to a level similar to the
undirected propagation model (36%). Finally, simple first-
neighbors models achieve up to ∼27% accuracy, a value close
to but higher than the random expectation (Fig. 2E, dashed
red line).
Next we explore whether the signed DYNAMO models can

correctly predict the signs of the perturbations. Such signs in-
dicate whether the increase in a species concentration causes
another species to be up- or down-regulated. This is important as
many measurements report sets of down- or up-regulated genes.
We therefore compute the proportion of accurate sign predic-
tions using the signed propagation and first-neighbor models
(Fig. 2F). The results show a similar trend with improvement
over the influence strength case, with 78% accuracy (P < 1e-16)
for the propagation model and 33% (P = 1.7e-5) for the first-
neighbors model.
Overall, we show that topology accounts for two-thirds of the

accuracy budget of dynamical models when predicting perturbation
patterns. In particular, we find that the simple distance-based model
has performance similar to that of the top-performing propagation
model.

Robustness to Network Incompleteness.While Fig. 2F confirms the
importance of topology in retrieving biochemical influence pat-
terns, it is unclear to what extent the results hold if the un-
derlying interactome is incomplete. Indeed, high-throughput
methods cover less than 20% of all potential pairwise protein
interactions in the human cell (7). Despite the gradually in-
creasing coverage (1, 36), we can expect to deal with incomplete
models for many years to come. This prompts us to address the
robustness of our approach to link removal. Since all approaches
inherently rely on the Jacobian matrix of the system, removing a
nonzero entry is equivalent to removing a link. We show in Fig.

2G the average accuracy of the DYNAMO models in retrieving
the original biochemical model sensitivities when removing an
increasing proportion of links (i.e., an increasing proportion of
entries from the original Jacobian matrix). We observe two dif-
ferent behaviors. For directed models the accuracy decreases
linearly, while for undirected models it has a concave shape,
decreasing slowly initially then more rapidly with additional link
removal. This can be understood by realizing that many models
have a substantial fraction of reversible equations, modeled as two
links of opposite direction between two nodes. In the undirected
case, removing one of those two links does not change the net-
work, making these models therefore more robust to link removal.
Moreover, we find that at 50% incompleteness the propagation
and biochemical models have similar accuracies, with the bio-
chemical model still slightly better than the propagation one (45%
vs. 39%). This demonstrates that with the current level of in-
completeness of biochemical networks topological models are
competitive with more complex “kinetics-aware” models.

Network Features Underlying Accurate Influence Prediction. Given
the differences in size and scope across the 87 biological models
(Dataset S1), next we investigate what network characteristics
contribute to higher prediction accuracy. For this we measured
the correlation between various quantities and the directed
signed propagation model accuracy across 87 biological models
(Fig. 2H). The gray area specifies the 95% confidence interval.
We find that the model size has no effect on accuracy, while the
dynamics does: The presence of very high Jacobian values, cor-
responding to fast reactions, leads to smaller accuracies. This
stems from the fact that such outliers in the Jacobian matrix can
outweigh the other links and lead to faster propagation across
selected links in the biochemical model, a feature that cannot be
captured by the network topology alone. We also find that the
proportion of reversible equations negatively impacts the accu-
racy. Indeed, directedness does not offer an advantage for net-
work models for BioModels dominated by reversible equations,
and the directed propagation model closes the gap with the less-
accurate undirected model. This result is supported by the
finding that higher accuracies can be reached for networks that
can be decomposed into a large number of strongly connected
components (SCCs), that is, subgraphs for which every node is
reachable from every other node. When filtering out BioModels
with only one SCC, we observe significant improvement of the
DYNAMO accuracies, reaching to ∼80% accuracy (SI Appendix,
Fig. S3). We show in SI Appendix, Fig. S4 two example Bio-
Models with respectively n = 1 and n = 5 SCCs. The network
with one SCC is dense and poorly modular, while the one with
five SCCs is sparser and displays chain-like structures. Support-
ing such structures, we find higher accuracies for networks that
do not display clear hubs (low average degree, eigenvector cen-
trality, and proportion of structural holes) and are sparse (low
link density). Finally, since the link weight plays a role through
the Jacobian, we would expect that link betweenness centrality
should similarly matter, but we find no significant correlation.
Overall, we find that topological models reach up to 80% ac-
curacy for biological models with certain network characteristics
pertaining to sparsity and modularity.

Comparison with an NHM. While our DYNAMO framework en-
compasses a broad range of topological models, it does not in-
clude any combinatorial information and we do not model how
entities combine when influencing a node—we consider these
combinations to be “OR gates” (i.e., additive functions). Here
we compare our simplified DYNAMO models to the kinetic-
agnostic Boolean-like NHM (Methods) proposed by ref. 20 that
encapsulates such combinatorial features from the original bio-
chemical model (Fig. 3A). The NHM represents the dynamics by
sigmoidal activation or inhibition functions parameterized
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through three shape parameters and allows for multiplicative
inputs (“AND gates”). Such features, absent from our DY-
NAMO framework, are designed to offer more realistic insights
into the full biochemical model. Our goal is to quantify the re-
sidual accuracy in the DYNAMO framework resulting from ig-
noring combinatorial inputs. The NHM has previously been
applied to the beta-adrenergic signaling pathway, a well-studied
signaling network regulating cardiac myocyte contractility and
involved in cardiac hypertrophy and heart failure (Fig. 3B). The
full biochemical model (37) contains 87 model parameters,
characterizing the interactions between 25 species via 33 links
(37). The biochemical model was approximated by the NHM,
finding that the resulting sensitivity matrix shows a good corre-
spondence to the full biochemical model (20). Moreover, the
NHM was refined to reproduce accurate temporal dynamics of
several key proteins by fitting 11 parameters to full time-course
data obtained with the full biochemical model (referred here-
after as the “NHM fit” model).
Here we apply our DYNAMO framework to the beta-

adrenergic network and compare the resulting sensitivity matri-
ces to the original biochemical one (Fig. 3C and sensitivity
matrices shown in SI Appendix, Fig. S5). As previously, we ob-
serve a gradual decrease of the accuracy of influence patterns
with the decreasing complexity of the network models. In-
terestingly, the directed propagation and distance models show
accuracies of ∼80%, similar to the accuracies for both the NHM
and NHM fit models.

We then explore the robustness of these results to random vari-
ations in the biochemical parameters (Methods and Fig. 3D). For this
we generate perturbed biochemical models by multiplying all pa-
rameters by a factor randomly chosen between ½ and 2. The
resulting sensitivity matrices are then used as ground truth bio-
chemical model to compare with the DYNAMO models. We ob-
serve that the accuracy of the network models is mostly unchanged
when comparing to the perturbed biochemical models (Fig. 3D).
However, when comparing the perturbed biochemical model sensi-
tivities with one another, we observe an average accuracy of ∼80%,
similar to that of the best network models (NHM, propagation, and
distance models). This indicates that biochemical models with poorly
measured kinetic parameters (up to twofold variation) are as accu-
rate as topological models. This exhibits the utility of such simple
topological models in the context where obtaining precise kinetic
information would require important experimental investment.

Topology Predicts Physiological and Phenotypic Perturbations.While
perturbation patterns are of general interest for assessing the
quality of our models, testing the true value of the network
topology-based modeling framework needs experimental vali-
dation. To test the accuracy of the DYNAMO models against
experimental observations, we focused on the chemotaxis network
in bacteria (Fig. 4A) for which experimental data are available (38)
(Methods). This model is part of the BioModels database (22), and
the DYNAMO models capture its dynamics with a 90% accuracy
(Fig. 4B). The experimental dataset consists of knockouts and
overexpression assays of six genes of the chemotaxis network and
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Fig. 3. Topology predicts influence in a signaling network. (A) Schematic representations depicting the propagation of a perturbation in a biological
network according to the biochemical and the NHM. “Signed-fit” correspond to the fitting of 11 parameters from this model to reproduce key quantitative
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their combinations, followed by observation of the change in ex-
pression of other genes from the network. In addition, the ex-
periments also report changes in bias, a phenotypic quantity
determined by the ratio of multiple biochemical species concen-
trations and capturing the exploratory behavior during chemotaxis
(Methods and Fig. 4C). In Fig. 4 D and E we compare the ex-
perimental observations (left columns) to the predictions from the
propagation model on the signed directed network (right columns)
under several assays. We focus on the accuracy in retrieving the
correct sign of the observed perturbations. We observe that the
network model predicts the observed sign of the perturbations in
86% of the cases for gene expression changes (13 out of 15 cases,
P = 4.9e-4 under binomial test, Fig. 4D). Moreover, it predicts
phenotypic changes with 75% accuracy (9 out of 12 cases, P =
0.019, Fig. 4E), demonstrating the value of topological models in
predicting physiologically relevant biological outcomes. Taken
together, these results demonstrate that the precision holds when
using data from experimental perturbations.

Discussion
While the coverage of the physical interactions underlying bi-
ological networks has increased considerably in the past decade,
we continue to lack accurate and comprehensive data on the
kinetic parameters determining the dynamics of each individual
process. We must therefore evaluate the predictive potential of
purely topological models, quantifying their ability to unlock
quantitative insights on physiologically relevant processes. In this
work, we proposed a systematic DYNAMO framework to mea-
sure the loss in predictive power when we lack the kinetic pa-
rameters in a biological network. We concentrated on the
patterns characterizing the spread of perturbations of selected
biochemical species, and its impact on all other species in the
network. Such patterns are of direct interest as we seek to un-
derstand changes in gene expression patterns induced by disease-
causing mutations. We used detailed dynamical biochemical
models derived from the literature to estimate the accuracy of
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the topological models in retrieving the perturbation patterns
characterizing the full dynamics. Interestingly, we find that a
propagation model on a topology that captures the direction and
sign of the interactions can account for ∼65% of the full pertur-
bation patterns across all models, an accuracy that can reach 80%
for models with certain network characteristics. Furthermore, this
model shows only mild improvement over a simpler distance-
based model on a directed network. This is important since net-
work distance in the interactome has been used extensively to
predict disease similarity between disease genes (7) and drug–
disease association between a set of drug targets and disease genes
(30). We also find that a simpler first-neighbor model or complex
models that lack directionality, though offering smaller accuracy,
still carry predictive potential compared with a random reference
frame. Moreover, the beta-adrenergic example demonstrated that
the best DYNAMO topological models can be as informative as
slightly perturbed biochemical models where kinetic parameters
would carry measurement noise. They also offer an accuracy
comparable to that of models with more complex nonlinear dy-
namics, key parameters fit, and multiplicative input functions.
A usual concern raised about the predictive power of bio-

chemical networks is that the interactome is far from complete.
We therefore addressed the robustness of our approach to link
removal, finding that the DYNAMO models are in general more
robust than the biochemical model to link removal, and that the
propagation model has accuracy comparable to that of the bio-
chemical model at 50% incompleteness. Therefore, we find that
the kinetic-agnostic DYNAMOmodels are as predictive as the full
biochemical models in the context of incomplete interactome.
We also explored which network characteristics offer greater

accuracy for the DYNAMO framework. This is important as it
allows one to know before any kinetic parameters have been mea-
sured whether that information would lead to a drastic improvement
over a topological model. The analysis indicates that networks that
can be decoupled into many strong connected components (i.e.,
many chain-like structures) and are in general sparse (low degree
nodes and link density) lead to higher DYNAMO accuracies.
Finally, exploring the topological models’ ability to predict ob-

served outcomes from experimental perturbations in the chemotaxis
pathway, we find a 75–86% accuracy, a result in agreement with the
previous accuracies computed for the full perturbation patterns.
This work has important implications for our understanding of

the role of the different modeling frameworks currently in use in
network biology and medicine. The ability to extract information
on the spread of perturbations from an accurate knowledge of
the topology of biological networks will be of great value for drug
development. In particular, the linearity of the equation used to
predict perturbation patterns in the propagation model makes it
straightforward to explore any combination of perturbations,
therefore paving the way for a better understanding of drug
combinations and improved therapies. Overall, our findings in-
dicate that the lack of large-scale measurements of the kinetic
parameters may not prevent network biology from offering
quantitative and accurate predictions on perturbation processes.
On the contrary, focusing on topology appears well-justified as it
holds the largest share of the descriptive power in this endeavor.

Methods
BioModels Database. Models from the BioModels database (22) were down-
loaded in bulk from the BioModels ftp website (ftp://ftp.ebi.ac.uk/pub/databases/
biomodels/). We used the BioModels_Database-r30_pub-sbml_files dataset
(ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/2016-05-10/). SBML files
were processed using libsbml matlab library to extract the dynamical equations (34).

Derivation of the Influence Network. We converted the reactions from Bio-
Models SBML files to reaction networks using libSBML (34).We first extracted the
differential equations describing the dynamical models in the form _xj =
fjðx1, . . . , xNÞ, where N describes the number of species in the model and xi is the

concentration of species i. These equations are in turn converted to an “influ-
ence network” where a link from species i to j is created if i is in the differential
equation describing the evolution of j (i.e., if ∂fj=∂xi is not identically zero). The

sign of the link is the sign of d _xj=dxiðx*Þ, where x* is the steady-state vector of

species concentration. In other words, the influence network is signðJT ðx*ÞÞ
where JT is the transpose of the Jacobian describing the system. Models were
integrated using the ode23tb function from MATLAB R2016a and the Jacobian
was computed using finite difference method with step size 1e-3.

Computation of Biochemical Sensitivities. The biochemical sensitivities are
computed following refs. 17 and 27. Writing the dynamical equations as
_xj = fjðx1, . . . , xNÞ, where N is the number of species in the model and xi is the

concentration of species i, we define the Jacobian by Ji,j = ∂fj=∂xiðx*Þ, where

x* is the steady state of the system (Fig. 2B). The Jacobian captures the
impact that a small perturbation in xi has on the value of xj, providing a
quantitative measure for the influence of i on the activity of j. The partial
derivative implies that no other node activity has changed, so that the Ja-
cobian only captures direct interactions. To account for indirect interactions
we further define the sensitivity matrix by Sij =dxi=dxj. Here, the full de-
rivative implies that all nodes are allowed to change in response to j’s per-
turbation, and hence indirect effects are also accounted for. The two
matrices are linked by the following equations (17, 27):

8><
>:

Sii =1

Sij =
XN
k=1

JikSkj   ði≠ jÞ. [4]

These equations can be simplified by noting that S= JS off the diagonal, so
that we can find a diagonal matrix Δ such that S= JS+Δ. This leads to

S= ðI− JÞ−1Δ, where I is the identity matrix. Finally, using Sii = 1, we find that

Δ=Dð1=ð1− JÞ−1Þ, where Dð. Þ is the diagonal operator and the oper-
ator=denotes element-wise division. Taken together, this leads to the Eq. 2.

Network Models of Influence Propagation.We use models i–iii described in the
text to predict influence propagation in a network (Fig. 1 C–E). For the
propagation model, we extended the PRINCE methodology to the case of a
directed network by using in- and out-degree in the normalization process
(discussed in the text). For the signed network, we used the same normali-
zation as for the signed directed adjacency matrix, ensuring the convergence
of the unsigned random walk. To better understand the extension to the
signed case, we return to the equation of the underlying perturbation (29):

Ft+1 = αW ’Ft + ð1− αÞF0,

where Ft represents the vector of perturbation at time t, ð1− αÞ is the return
probability, W ’ is the normalized signed directed adjacency matrix, and F0 is the
initial perturbation. A perturbation spreads to neighboring nodes with a proba-
bility given by the absolute value of the corresponding element in W ’ and is
multiplied by the sign of this element. Accordingly, sensitivities can be thought of
as a weighted sum over all network paths between a perturbed node and an
impacted node, with each path carrying a positive (negative) weight if the path
contains an even (odd) number of negative signs. As such, the absolute values of
the sensitivities of the directed signed diffusion model are smaller or equal to the
sensitivities of the directed diffusion model, ensuring convergence.

Note that in the propagation model the variation of α changes the dif-
fusion capability. However, we observed no significant change in the influ-
ence strength recovery across 87 BioModels when varying α (SI Appendix,
Fig. S2A). Indeed, we are interested in the ranks of the observed sensitivities
(the most- vs. the least-perturbed species), which is why we use the non-
parametric Spearman rank correlation. We show in the case of the chemo-
taxis pathway that while the change of α alters the values predicted by the
propagation model (SI Appendix, Fig. S2 B and C), it has no effect on
the rank of the model sensitivities (SI Appendix, Fig. S2 D and E), leaving the
Spearman correlation almost unchanged (SI Appendix, Fig. S2A).

In the case of the beta-adrenergic pathway, we use the normalized-Hill
function system developed in ref. 20. This model includes a simple non-
linear dynamics and multiplicative inputs on select cases as informed from
the literature. Species interactions were defined with normalized activating
or inhibiting Hill functions (fact or finhib) and pathway cross-talk was imple-
mented using logical AND and OR operations: “fðxÞfðyÞ” and “fðxÞ+ fðyÞ−
fðxÞfðyÞ,” respectively. The normalized activating or inhibiting Hill functions
have the form
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factðXÞ= BXn

Kn +Xn; finhibðXÞ= 1− factðXÞ,

where B and K are constrained such that factð0Þ= 0, factðEC50Þ= 0.5, and
factð1Þ= 1. From these constraints, we derive

B=
EC50

n − 1
2EC50

n − 1
;K = ðB− 1Þ1=n.

As default parameters we used EC50 = 0.5, n=1.4, and τ= 1.
For the NHM fit model, we used the refined NHM model from ref. 20

where several parameters in the NHM are fitted to time-course data from
the biochemical model using a nonlinear least squares optimization algo-
rithm. Eleven parameters were adjusted to fit model predictions, allowing
for more similar signaling dynamics and comparable peak fractional activi-
ties of species GSα and PLB compared with the biochemical model (20).

Comparison of Sensitivity Matrices. To evaluate the accuracy of each model,
we computed the Spearman correlation between their sensitivity matrix and
the one obtainedwith the full biochemical model. For unsigned networks, we
use the absolute value of the sensitivity matrix.

Robustness to Network Incompleteness. To model network incompleteness,
for each model we successively removed entries of the Jacobian (the links of
the influence network). A proportion of links removed was computed as the
number of entries removed divided by the total number of nonzero initial
entries. The links were chosen at random and the resulting incomplete Ja-
cobian was finally used to compute the new sensitivity matrix as well as the
topological models for DYNAMO. The random process was iterated 20 times.

Comparison with Experimental Data. For the chemotaxis model, experimental
data were obtained from ref. 38. We built the influence network from the
corresponding BioModel BIOMD0000000404. The propagation model was
used on the directed, signed network. We first explored whether the
propagation model retrieved the direction of change of the expression of
gene i caused by a mutation or overexpression of gene j for the experi-
mentally investigated cases. To do so, we retrieved the signs of elements ði, jÞ
from the predicted sensitivity matrix and compared them to the experi-
mental ones. In the case of mutations, the negative of the sensitivity matrix
was used. In the case of multiple mutations j1 . . . jN, the corresponding columns

of the sensitivity matrix were summed and the resulting vector was used to
retrieve the sign of the perturbation of interest. We then tested whether our
model could retrieve the change of a more complex phenotypic quantity,
namely the bias, determined by the ratio of the following biochemical species
concentrations:

bias=
M+MYp

M+MYp+MYpYp+MYpYpYp+MYpYpYpYp
.

Following the experiments of ref. 38, we explored the impact of perturbations
on the bias by computing the sign of its change after perturbation. Noting

bias=
u
v
,

we derived that for a perturbation dxj

dbias
dxj

=
du
dxj

−bias * dv
dxj

v
.

Therefore, the sign of the change of bias is given by signðdu=dxj − bias *dv=dxjÞ,
where bias= 0.7 is given by the full biochemical model (38), and du=dxj and

dv=dxj are obtained from sensitivity matrix of the propagation model.

Robustness of Sensitivity Matrices. We computed the robustness of the
Spearman correlation measure under parameter variation (initial conditions
and kinetic parameters). Parameters from the biochemical model were
multiplied by a factor randomly chosen between ½ and 2, and the corre-
sponding sensitivity matrix was computed. We repeated the process to ob-
tain 100 sensitivity matrices, discarding cases where the dynamical models
diverged, representing 35% of the trials.

Code Availability. The algorithms used in this work are available at https://
github.com/msantolini/dynamo.
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