
Viewpoint
A Genetic Model of the Co
nnectome
Highlights
d Modeling the genetic roots of the connectome

d Predicting genetically encoded biclique motifs

d Predicting genes potentially responsible for neural wiring

d Validating in the connectomes of three species
Barabási & Barabási, 2020, Neuron 105, 1–11
February 5, 2020 ª 2019 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2019.10.031
Authors

Dániel L. Barabási,

Albert-László Barabási
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SUMMARY

The connectomes of organisms of the same species
show remarkable architectural and often local wiring
similarity, raising the question: where and how is
neuronal connectivity encoded? Here, we start from
the hypothesis that the genetic identity of neurons
guides synapse and gap-junction formation and
show that such genetically driven wiring predicts
the existence of specific biclique motifs in the con-
nectome. We identify a family of large, statistically
significant biclique subgraphs in the connectomes
of three species and show that within many of the
observed bicliques the neurons share statistically
significant expression patterns and morphological
characteristics, supporting our expectation of com-
mon genetic factors that drive the synapse formation
within these subgraphs. The proposed connectome
model offers a self-consistent framework to link the
genetics of an organism to the reproducible architec-
ture of its connectome, offering experimentally falsi-
fiable predictions on the genetic factors that drive the
formation of individual neuronal circuits.

INTRODUCTION

While the tools of network science are often used to study the

brain, the connectome poses unique challenges for the field

(Sporns et al., 2004; Bassett and Bullmore, 2006; Ercsey-Ravasz

et al., 2013; Nicosia et al., 2013; Betzel and Bassett, 2017; Kai-

ser, 2017). An important unexplained fact is the high degree of

reproducibility in some of the observed networks: despite small

local variations, the connectome of the roundworm Caenorhab-

ditis elegans is believed to be largely identical for most worms

(Jarrell et al., 2012; Walker et al., 2017). In higher organisms,

while experience, learning, and epigenetic effects are known to

induce variations inmicro-wiring, there aremultiple local circuits,

like the early visual or olfactory systems, that are highly repro-

ducible within a species (LaVail et al, 1978; Hong and Luo,

2014; Bernardo-Garcia et al., 2017). The presence of the repro-

ducible local and global architectural features of the connectome

raises a fundamental question: where, and how, is the neuronal

connectivity information encoded in an organism?
While answers to these questions are undoubtedly rooted in

the biological details of brain development (Holguera and Des-

plan, 2018), a satisfying framework must also answer a deeper

theoretical question: how does a brain wire, to varying degree

of reproducibility, a network of billions of nodes and trillions of

links? Current generative models of neuronal wiring successfully

capture several known spatial and topological features of the

connectome (Sporns et al., 2004; Bassett and Bullmore, 2006;

Ercsey-Ravasz et al., 2013; Nicosia et al., 2013; Betzel and Bas-

sett, 2017; Kaiser, 2017). Yet these, as well as most models used

in the wider context of network science (Caldarelli, 2010; Zitin

et al., 2014; Barabási, 2016), are inherently stochastic, thus un-

able to reproduce specific circuits.

To explore the mechanisms responsible for wiring reproduc-

ibility, we must first decide how similar is the wiring of two con-

nectomes. This is a graph isomorphism problem, one of the

most challenging computational problems in graph theory (Ba-

bai, 2016). If, however, each node has a unique address (label),

which is shared by both graphs, for the resulting labeled graphs

it is easy to check isomorphism. This suggests that, if develop-

mental processes result in somewhat reproducible connec-

tomes in different individuals within the same species, each

neuron participating in such a reproducible circuit must

possess a unique label shared across individuals. With that in

mind, the wiring of the connectome raises a previously unad-

dressed theoretical question: how does the brain encode in a

reproducible manner the links between genetically stereotyped

neurons? Here, we show that by acknowledging the genetic

roots of neuronal wiring, we can explain the observed

reproducibility.

Here, we propose a connectome model that builds on the hy-

pothesis that the formation of neuronal connections is deter-

mined by specific combinations of expressed genes. We show

that this hypothesis predicts the emergence of specific network

bicliquemotifs. Furthermore, themodel predicts that the biclique

motifs should be characterized by similarities in the gene expres-

sion patterns of participating neurons, allowing us to identify the

genes responsible for the observed local circuits.

RESULTS

Encoding Neuronal Identity
While neurons are clustered into broad classes based on their

morphology, function, and location, these differences are ex-

pected to be rooted in the differential expression patterns of their
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genes and proteins, controlled by combinations of transcription

factors (TFs) (Marcus, Marblestone and Dean, 2014; Zeisel et al.,

2015; Hobert, Glenwinkel and White, 2016; Tasic et al., 2016;

Paul et al., 2017). Hence, without loss of generality, we start

from the hypothesis that (1) neuronal identity is uniquely encoded

by the expression patterns of a neuron’s genes (or TFs, which in

turn control the expression of the genes) and (2) each TF can be

in two possible states, expressed (1) or not (0), ignoring for the

moment that the coding may depend on the degree of expres-

sion of each TF. With these approximations, that can be relaxed

if needed, we assume that neuronal identity is encoded by the

state of b distinct TFs. Such encoding can be rather efficient,

as an organism needs only b = log2(N) TFs to offer a unique

TF-based label (barcode) to each of its N neurons, with much

smaller than the number of TFs known to be present in various

organisms (Table S1). In other words, by relying on a small frac-

tion of its TFs, an organism can turn its connectome into a

labeled graph.

While TF-based encoding of neuronal identity is well estab-

lished (Marcus, Marblestone and Dean, 2014; Zeisel et al.,

2015; Hobert, Glenwinkel and White, 2016; Tasic et al., 2016;

Paul et al., 2017), there are several caveats to our starting hy-

pothesis. First, it is unlikely that the number of TFs included in

neuronal encoding is limited to the theoretical minimum, b =

log2(N), but likely more TFs participate, allowing for coding

robustness. Second, we do not need to assume that the b

TFs are exclusively used for establishing neuronal identity—

the same TFs likely play multiple developmental and functional

roles. Third, though in this viewpoint we follow the traditional

approach of referring to TFs as the drivers of cellular identity;

our framework can be formulated in terms of individual genes

as well, which we will do later when we focus on the role of in-

nexins in gap-junction formation. Fourth, neuronal identity is

determined by temporally and spatially induced signaling

developmental programs, and a series of equally complex pro-

cesses that guide the physical location of each neuron (Hol-

guera and Desplan, 2018). Here, we do not aim to address

these developmental processes but assume that differentiation

has progressed to a state where neuronal identity is well estab-

lished; hence, the proteins relevant for synapse formation are

already expressed. Finally, other regulatory factors also shape

neuronal identity, such as epigenetics, alternative splicing, or

post-translational regulation by miRNA. Given the paucity of

systematic data in this area, we are not able to address their

role here. Yet, the only requirement of the presented framework

is the existence of some differential expression patterns, like

those displayed by TFs or genes, which help us distinguish neu-

rons from each other, allowing us to model the connectome as

a labeled graph. Hence, with improved data, such additional

regulatory effects can be incorporated. We develop our frame-

work in the context of C. elegans, where wiring is reproducible

down to the level of individual neurons and show later its rele-

vance to other organisms.

Encoding Reproducible Synapses via Selective Coding
The wiring of a connectome is uniquely described by its adja-

cency matrix, B, with Bij = 1 if there is a directed link (synapse,

gap junction) from neuron i to neuron j, and Bij = 0 otherwise.
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To reproducibly generate two similar connectomes, the system

must somehow store its adjacency matrix, representing OðN2Þ
bits of information. It is unclear where this extraordinary amount

of information is encoded in the brain. While TFs can offer unique

identity to each neuron, a neuron with k links will need k$log2ðNÞ
bits to store the addresses of the neurons it synapses with, rep-

resenting nearly 60%of all available TFs inC. elegans and almost

three times the total documented number of TFs in Drosophila.

Hence, direct transcriptional encoding of the whole adjacency

matrix is not feasible.

To identify the biological mechanisms that could contribute

to the reproducible encoding of the connectome, consider sur-

facemembrane proteins, whose interactions seed synapse and

gap-junction formation in the brain (S€udhof, 2018). Gap junc-

tions are formed by the interaction of innexin or connexin pro-

tein families and synapses require the combinatorial expres-

sion of multiple surface proteins (Carrillo et al., 2015). The

specificity of synapse formation between some neuron pairs,

and the inability of other pairs to synapse, even if they come

in physical contact (Williams, de Wit and Ghosh, 2010), sug-

gests that gap-junction and synapse formation specificity is

governed by biological mechanisms linked to neuronal identity,

ultimately encoded by specific TF expression patterns (Wester

et al., 2019). Wemathematically formulate this biological mech-

anism as an operator O, whose role is (1) to inspect the TF sig-

natures of neurons i and j, and (2) to decide whether to facilitate

(or to block) the formation of a directed i/ j link between them.

This operator can encode the actions of external agents, like

glia cells, which select specific neurons and facilitate synapse

formation between them (Rapti et al., 2017), but can also detect

the combinatorial expression of surface proteins, whose pro-

tein-protein interactions catalyze synapse formation. We will

discuss the potential biological implementation of the operator

O later, but, as we show next, it is sufficient to assume the ex-

istence of such operators O to offer testable predictions on

connectome wiring.

Consider the simplest case, corresponding to an operator O

capable of identifying the full TF profile of two neurons, i and j

(defined as a vector of elements Xi = f0;1;0;.g, each capturing

the 0 or 1 expression of a specific TF) and initiate the formation

of a directed link (synapse, gap junction) i / j between them.

One could encode the full connectome by using a different

operator O for each link (gap junction, synapse), but such cod-

ing is highly inefficient. It also lacks robustness, as it is unlikely

that a biological mechanism can reliably read all TFs of a

neuron. Most importantly, such accurate encoding is not

necessary. For example, in C. elegans the expression of the

appropriate innexin proteins is sufficient for neurons i and j to

form a gap junction. In other words, the operator O governing

gap-junction formation only needs to detect the presence of

the appropriate innexin proteins, driven by the state of the

TFs that control innexin expression. We therefore hypothesize

that the wiring of the connectome is determined by selective

operators, that detect the expression pattern of only a subset

of TFs, rather than all TFs. As we show next, such selective op-

erators predict the emergence of detectable and reproducible

network motifs in the connectome, offering falsifiable tests of

our modeling framework.
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Figure 1. Connectome Model

(A) A neuronal system consisting of eight neurons, the identity of each neuron

being encoded by the distinct expression pattern of its three TFs.

(B) A biclique operatorO1 that recognizes the neuron with barcode identity 101

and generates a single directed link to destination neuron 100.

(C) Biclique operator O2 recognizes two TFs in the destination neuron set;

hence, it encodes two links (G / E and G / F) that form a bi-fan motif.

(D) Biclique operator O3 recognizes a single TF in the source neurons and two

in the destination neurons and generates a 432 directed biclique in the con-

nectome.

(E) The joint action of the three biclique operators shown in (B)–(D) leads to the

connectome shown in (E), where each link is rooted in a distinct respective

biclique, as indicated by the color of the links.
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Selective Operators and Bicliques
Let us start with a hypothetical connectome consisting of eight

neurons, A–H, whose identity is uniquely determined by the dif-

ferential expression of three TFs (Figure 1A). An O1 operator

that reads the full barcode of each neuron, recognizing a unique

source (F, 101) and destination (E, 100) neuron’s expression

pattern, will encode a single directed link from neuron F to

neuron E (Figure 1B). However, a more selective operator O2,

that reads only the first two TFs of the destination neuron,

and ignores the third, will generate directed links from a single

source neuron (G, 110) to two different destination neurons (E,

100, and F, 101), as it is unable to distinguish the expression-

based differences between E and F (Figure 1C). A third operator

O3, that recognizes only a single TF in the source neurons, and

two TFs in the destination neurons, will generate eight links,

connecting each of the four source neurons with TFs 0XX, to
any neurons with TFs 11X (Figure 1D). In general, the more se-

lective an operator O is (i.e., the fewer TFs it recognizes), the

more directed links it can encode: if a total of q elements are

X’s in the operatorO, it will encode the formation of a maximum

of 2q directed links in the connectome. Note that in our model a

single neuron can participate in multiple wiring rules, driven by

the expression patterns of different gene/TF subsets. For

example, neurons E and F participate in both O1 and O2, and

G participates first in the source set of O2, then in the destina-

tion set of O3.

Figures 1B–1D summarize the first prediction of the connec-

tome model: each biological mechanism that relies on a subset

of TF signatures to initiate synapse formation will generate an

imprint in the connectome in the form of a unique network motif,

known as directed biclique in graph theory (Zelinka, 2002). A

directed biclique is a subgraph that consists of two sets of nodes

(S, D), where each node of the source (S) set is connected with a

directed link to every node of the destination (D) set. The simplest

biclique is a single link (Figure 1B), but, as shown in Figures 1C

and 1D, the fewer TFs the operator O recognizes, the larger

the resulting biclique. In other words, the connectome model

makes an explicit, falsifiable prediction: if neuronal wiring is

determined by specific TF combinations, then the connectome

must contain specific large biclique motifs. Each of these bicli-

ques corresponds to a selective, TF-dependent and genetically

encoded biological mechanism mathematically described by

an operator O.

To unveil the biological mechanism behind each operator, we

need an accurate connectome and single-cell expression data

for each neuron, which is currently unavailable for any organism.

Yet, as we show next, we can test the model’s key predictions in

C. elegans, an organism whose full connectome is mapped (Var-

shney et al., 2011; Cook et al., 2019). We begin validating the

connectome model’s predictions on the synaptic connectome

defined by 279 neurons connected by 3,503 links, each link cor-

responding to one or several synapses (Cook et al., 2019). As we

show in the STAR Methods, the model’s predictions are verified

in other reconstructions, as well as in the connectome deter-

mined by gap junctions.

Bicliques in C. elegans

If the wiring of the connectome is determined by TF-dependent

selective operators, the connectome model predicts the exis-

tence of multiple biclique motifs that should be detectable in

the connectome. As within each biclique, there are multiple

smaller bicliques; here, we focus on maximal bicliques, repre-

senting the largest possible fully connected biclique among a

set of nodes. Identifying all maximal bicliques in a graph is an

NP-complete problem (Dias et al., 2007). However, given the

limited size of the C. elegans connectome, we were able to iden-

tify all maximal bicliques using the Maximal Biclique Enumera-

tion Algorithm (MBEA, see STAR Methods) (Zhang et al., 2014).

The algorithm identified 9,431 maximal bicliques in the

C. elegans synaptic connectome, which can be classified into

182 distinct maximal biclique motif types.

Given the dense wiring of the C. elegans connectome, some

of the observed maximal bicliques could emerge by chance.

As standard in network science, we use degree preserving
Neuron 105, 1–11, February 5, 2020 3
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Figure 2. Evidence of Bicliques in the

C. elegans Connectome

(A) Maximal bicliques of size 336 are significantly

overrepresented in the chemical synapse

connectome: 173 maximal bicliques of size 336

are found in C. elegans connectome, but only

0.91 ± 1.21 are observed under degree-preserving

randomization (Z score = 142).

(B) Average numdber of maximal bicliques

observed under degree-preserving randomization.

Rows indicate the size of the source (S) set, and

columns indicate the size of the destination (D) set.

(C) Number of unique maximal bicliques of a given

size observed in the synaptic connectome of

C. elegans. Note how small maximal bicliques are

less common than in the randomizations.

(D) Z scores of maximal bicliques of various sizes.

Orange squares show maximal bicliques that

are underrepresented in the real connectome

compared to the random reference (Z < �3.4)—

they capture small maximal bicliques (2 / n, or

n / 2) that often emerge by chance. Green

squares capture maximal bicliques that are over-

represented in the real connectome (Z > 3.4)—

these are the ones that we expect to have genetic

origins. Gray maximal bicliques are observed, but

their numbers are non-significant (�3.4 < Z < 3.4).

The white region corresponds tomaximal bicliques

that are absent in the chemical connectome.

Similar plots describe the gap-junction con-

nectome, as well as the synaptic and gap-junction

connectomes of the other C. elegans reconstruc-

tion (Figure S1).
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randomization (Maslov and Sneppen, 2002) to test the statistical

significance of the observed maximal bicliques. We generated

1,000 networks whose size and degree sequence matches the

C. elegans connectome and identified all maximal bicliquemotifs

in each random realization of the original network. For example,

we find 0.91 ± 1.21maximal bicliques of size 336 in the random-

ized networks (Figure 2A). Yet, the real C. elegans connectome

has 173 maximal bicliques of size 336, outnumbering with Z =

142 SDs the number of such motifs in a randomized network.

This indicates that these maximal bicliques could not have

emerged by chance but may be rooted in the genetic mecha-

nisms that determine the wiring of the connectome. In Figure 2D,

we cataloged all observed maximal bicliques in C. elegans,

finding that 98 of the 182 distinct maximum bicliques are statis-

tically overrepresented (Z > 3.4, after multiple testing correction).

Some of the larger and denser motifs are so rare that they never

appear in the 1,000 random configurations we generated, yet we

find multiple copies of them in the C. elegans connectome. Ex-

amples of such large maximal biclique motifs found in the

C. elegans connectome are shown in Figure 3.

The exceptional statistical significance of these large maximal

bicliques is our first evidence for the validity of the proposed con-

nectome model. We also find that 94.6% of all synapses of the

C. elegans connectome are part of at least one maximal biclique

of statistical significance, suggesting that almost all synaptic con-

nections could be explained by the geneticmechanisms captured

by the connectome model. Small motifs, like bifans and feedfor-

ward loops, were previously documented in the C. elegans con-
4 Neuron 105, 1–11, February 5, 2020
nectome (Reigl et al., 2004; Itzkovitz and Alon, 2005; Qian et al.,

2011). The proposed connectome model may be able to explain

the genetic origins of these as well and, in addition, predicts the

existence of specific large motifs, the bicliques, that, given their

size, could not be detected by previous analyses. Each of these

potentially represents an imprint of a transcriptional mechanism

that shapes the wiring process. Finally, note that other mecha-

nisms, like physical proximity or network development, may also

contribute to the observed bicliques.

Biological Significance of Bicliques
The second prediction of the connectome model goes beyond

wiring and pertains to the identity of the S (or D) neuron sets

within each biclique: the expression pattern of the TFs recog-

nized by the corresponding O operator are expected to display

significant overlap (Figures 1C and 1D). In other words, the neu-

rons participating in a specific biclique are not chosen randomly

but are expected to have common expression patterns. A

comprehensive test of this prediction ideally requires single-

cell expression data of each C. elegans neuron throughout

development. Lacking this, we tested the predictions using

gene expression data available for 935 genes in 279 C. elegans

neurons, compiled in the WormBase repository (Harris et al.,

2010).We start by testing the prediction that the gene expression

pattern of the S (or D) neurons within each biclique motif must

display a degree of expression-based similarity that cannot be

explained by chance. Evidence for this is offered by the maximal

biclique shown in Figure 3A.We find that the four source neurons
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A B Figure 3. Biological Significance of the

Observed Bicliques

(A) An observed chemical synapse maximal bi-

clique of size 43 8. Neurons are colored by class,

with all neurons in the source set synapsing onto

all neurons in the destination set. The neurons

present in this maximal biclique play a functional

role in the locomotion of C. elegans. Both the

source and destination sets co-express a statis-

tically significant number of genes in all neurons.

Furthermore, the source set is significant in ge-

netic expression (p < 4.36*10�6), class enrichment

(p < 0.00975) and type enrichment (p < 0.00708).

The destination set is significant for all measures.

(B) A maximal biclique of size 434 in the gap-

junction connectome of C. elegans. We find that

both source neurons all express inx-7 and unc-9,

known to code for proteins forming gap junctions,

and the destination neurons express unc-9.

Furthermore, the source set was found to be

significant in genetic expression (p < 0.000468),

class enrichment (p < 0.000155), and type

enrichment (p < 0.00708). The destination set was

significant for all measures except genetic

expression and lineage distance.
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(PVCR, PVCL, DVA, AVAR) have significantly similar expression

patterns (S set: p < 10�5). The same is true for the eight destina-

tion neurons in the D set (p < 10�19). To generalize this observa-

tion, we used a 2-sample Kolmogorov-Smirnov test to evaluate

the expression-based similarity of the S and D gene set in

each maximal biclique in C. elegans, finding statistical signifi-

cance in 1,964 S sets and 3,570 D sets (see STAR Methods).

When using gene expression data, we implemented multiple hy-

pothesis correction; hence, significance represents p < 0.0125.

The connectomemodel also predicts that the observed statis-

tically significant similarity of the neurons found in the same S (or

D) set is rooted in the identical expression of the TFs recognized

by the operatorO, and the genes driven by these. In other words,

we should be able to explicitly identify the genes or the TFs each

operator recognizes, helping us unveil the potential genetic

mechanism behind each maximal biclique motif. To achieve

this, for each S (and D) neuron set we identified the number of

genes with identical expression patterns (expressed, 1, or not,

0). We also estimated the expected number of common genes

for the same nS (or nD) randomly selected neurons (see STAR

Methods), finding that 1,433 S sets, and 2,874 D sets share a sta-

tistically significant number of common genes. For example, in

the S set of the maximal biclique of Figure 4A we find that 11

genes are expressed in all four neurons (acc-4, ace-2, cam-1,

cho-1, glr-2, glr-5, inx-7, nmr-1, unc-17, unc-3, unc-36). Given

that for four randomly selected neurons the number of genes

with shared expression pattern is expected to be 0.2, the

observed pool of 11 genes in common has a p < 10�4 signifi-

cance (see STAR Methods). The significance persists even if

we correct for the fact that PVCL and PVCR are assigned iden-

tical expression patterns in WormBase (p < 0.0037). We observe

a similar pattern if we inspect the eight destination neurons of the

same motif (DB02, DB03, PVCL, AVBL, AVBR, AVDR, AVER,

AVAL), each of them previously implicated in locomotion. These

eight destination neurons share five genes (acc-4, ace-2, cho-1,
unc-17, unc-3), whose significance (p < 0.0001) persists even if

we correct for the identical expression patterns of ALBL/R and

DB02/3 pairs, as well as if we choose a more conservative

random reference, correcting for the degrees of the neurons,

and class-based expression biases (see STAR Methods). Of

the shared genes, unc-3 was found to be crucial for presynaptic

function (Harris et al., 2010), and unc-36 plays a role in presynap-

tic organization and morphology (Harris et al., 2010), in line with

our expectation that some of the genes recognized by the oper-

ator O should play a known role in neuronal identity and wiring.

As the TFs recognized by O contribute to a neuron’s transcrip-

tional identity, we expect that the neurons in the sameS (or D) sets

should also be similar to each other across multiple detectable

morphological, functional, and developmental characteristics

(see STARMethods).We therefore askedwhether the S/D neuron

sets selected by the biclique motifs have similar lineage distance,

measuring the coalescence distances between neurons defined

by the developmental lineage in C. elegans. We also explored

whether the neurons in the S and D sets have similar anatomical

characteristics, defined by the 103 neuronal classes of neurons

with similar morphology (White et al., 1986). Further, we checked

for neurotransmitter enrichment, using as a proxy the seven

unique neurotransmitters each neuron uses (Pereira, 2015).

Finally, we examined neuron functional type, segmented into sen-

sory neurons, motor neurons, and interneurons. We find signifi-

cant enrichment of neuronswith similar lineage, class, neurotrans-

mitters, and type in both S and D sets, not only for the maximal

bicliques shown in Figure 3 but in many large maximal bicliques

(see STAR Methods). Although correlations between cell identity

measures would be expected, past work has shown that lineage

branching shows limited correlations with gene expression, func-

tional type, neurotransmitter expression, or anatomical class (Ho-

bert, 2005; Packer et al., 2019).

Finally, we also identified the maximal bicliques present in the

gap-junction connectome, identifying the statistical significance
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Figure 4. Unveiling the Biological Roots of

the Biclique Operators

(A and B) (A) The 43 4 chemical synapsemaximal

biclique shows significant co-expression patterns

in both its source and destination neurons,

partially driven by the set of three genes with

common expression in the S set and three genes

in the D set. This suggests that the maximal bi-

clique is generated by the operator shown in (B)

that recognizes the three genes on the source side

and the three genes on the destination side.

(C and D) (C) The bipartite network with all neurons

expressing inx-2 in the source, and inx-3 in the

destination set, predicted by the operator shown

in (D), based on the hypothesis that inx-2 and inx-3

expression can seed gap-junction formation. We

find that 7 of the possible 32 connections are

present in the gap-junction connectome (solid

lines); however, only 2 potential connections are

missing when we only consider neurons that are

touching (dashed lines).
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of each maximal biclique, and its potential biological origins. In

Figure 3B, we show a 434 maximal biclique whose neurons

are connected by gap junctions. Once again the S andD neurons

show biological significance across expression patterns, as well

as class and type enrichment. Furthermore, unc-9, the gene

expressed in both S and D sets, has been experimentally

implicated in gap-junction formation in C. elegans (Starich

et al., 2009).

Taken together, we find that the neurons selected by the

maximal bicliques found in the C. elegans connectome

display highly significant genetic, morphological, and line-

age-based similarity in both the synaptic and the gap-junc-

tion-based connectomes, supporting our hypothesis that

each maximal biclique motif represents the imprint of a ge-

netic operator that determines the local, reproducible wiring

of the connectome.

The Biological Nature of the Biclique Operators
According to the connectome model, each observed maximal

biclique (Figures 3 and 4) is rooted in a biological operator O,

which mathematically describes a transcription-based process

responsible for synapse or gap-junction formation between the

neurons forming the maximal biclique. The formalism behind

the model can unveil the biological mechanisms behind each

operator O, if we have access to single-cell expression data

that captures the expression level of each gene in each neuron.

Currently, such data cover only 935 of the 20,000 protein coding

genes ofC. elegans. Yet, aswe show next, we can still rely on this

incomplete data to illustrate how to unveil the biology behind

some of these operators.
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Let us start from the 434maximal bicli-

que shown in Figure 4A, observed in the

chemical connectome. Both the S neu-

rons and the D neurons have three genes

expressed in common, and both sets are

significant (p < 0.025). These jointly ex-

pressed genes allow us to reconstruct a
potential operator that may be responsible for the wiring behind

the maximal biclique (Figure 4B), suggesting that the joint

expression of cam-1, glr-1, and unc-47 in the source neurons

predestines them to link to neurons that express simultaneously

acc-4, ace-2, and unc-6. This does not mean that only these

genes drive the synapse formation—as the available expression

data cover less than 5% of the genes, the expression of these

genes may be driven by some other, yet-unmapped TFs that

define the identify of these neurons, or may correlate with

some of the surface proteins that drive synapse formation. How-

ever, if we apply the operator of Figure 4B to the expression data

of all neurons in C. elegans, we find 7 S neurons and 27 D neu-

rons; i.e., the operator of Figure 4B defines neuron sets that

are an extension of the maximal biclique of Figure 4A. Of the

189 potential connections the operator of Figure 4B would pre-

dict, only 31 are actually present. In other words, we observe

an incomplete biclique, corresponding to the case when genetic

rules predict a fully connected biclique, but only a subset of the

predicted links are observed. While incomplete, this biclique is

highly significant—given the link density of C. elegans; if we

observe 189 random links, we are expected to have 8.51 links

by chance; hence, the significance of the observed incomplete

biclique is p < 10�8. One important reason for this biclique’s

incompleteness is rooted in spatial effects: two neurons may

have the genetic makeup to connect, but they never meet phys-

ically to form a gap junction. Indeed, using the C. elegans phys-

ical adjacency data (Cook et al., 2019), we find that 153 of the

missing links can be explained by the lack of physical proximity.

In other words, only 5 of the 36 predicted gap junctions are

missing. This example illustrates how to use the connectome
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model to unveil the potential genetic mechanisms driving syn-

apse formation, a process that can bemathematically formalized

(unpublished data).

Another approach is to start from the known genetic drivers

of link formation and then unveil the associated biclique. We

illustrate this route using gap-junction formation, known to be

driven by innexin-innexin interactions in C. elegans (Hall,

2017). There are 25 innexin proteins in C. elegans, but only 15

gap junction-related proteins are expressed in the nervous sys-

tem (Bhattacharya et al., 2019). Lacking extensive data on in-

nexin interactions in C. elegans, here we consider the potential

role of a protein interaction between inx-2 and inx-3 proteins.

Inx-3 has previously been shown to play a role in gap-junction

formation (Landesman et al., 1999) and to be essential for

development in C. elegans (Starich et al., 2003). If the expres-

sion of these proteins alone can seed gap-junction formation

in C. elegans (a hypothesis that needs to be experimentally

confirmed), the underlying operatorOwill recognize any neuron

that expresses inx-2 and will prompt them to form a gap junc-

tion with any neuron that expresses inx-3 (Figure 4D). We find

that two neurons (AVKL and AVKR) express inx-2, and 16 neu-

rons express inx-3; hence, a potential interaction between the

two proteins predicts the operator shown in Figure 4D, leading

to a 2316 biclique (Figure 4C). In line with this prediction, we do

find a bipartite motif with seven gap junctions linking the two

inx-2-expressing source neurons, AVKL and AVKR, to five of

the 16 destination neurons that express inx-3 (Figure 4C).

Again, we observe an incomplete biclique, that is still highly sig-

nificant (p < 0.001)—given the link density of C. elegans, these

two sets of neurons (2316) are expected to have 1.72 links by

chance. If we also consider the C. elegans physical adjacency

data (Cook et al., 2019), we find that 23 of the missing links

can be explained by the lack of physical proximity. In other

words, only two of the 9 predicted gap junctions are missing

(AVKR-DVA and AVKR-ALNL), and 7 are present, underlining

once again the accuracy the connectome model offers in un-

covering a plausible genetic interactions between neurons

that express inx-2 and inx-3.

Taken together, Figure 4 illustrates two different avenues we

can follow to unveil the genetic roots of the operators respon-

sible for the observed maximal bicliques–starting from the

maximal bicliques observed in the connectome (Figures 4A

and 4B) or starting from the known biology of gap-junction for-

mation (Figures 4C and 4D). Given the incomplete expression

data, the operators shown in Figure 4 are expected to be incom-

plete—they serve only to illustrate the procedure of unveiling the

biology behind each maximal biclique. Advances in single-cell

expression profiling could allow us to systematically unveil the

genetic roots of each synapse or gap junction, ultimately offering

experimentally falsifiable predictions.

DISCUSSION

The connectome model allows us to integrate, using a single

theoretical framework, information about the wiring and the ge-

netics of each neuron, offering several testable predictions: (1)

the existence of a reproducible structural imprint of each genet-

ically induced operator O in the connectome, represented by a
maximal biclique motif; (2) the expression-based similarity of

the neurons within each biclique. We find that such biclique mo-

tifs are indeed present in multiple connectome, supporting (1).

Gene expression data inC. elegans reveal that the neurons form-

ing these motifs share common expression patterns, as pre-

dicted by (2). Further, we show how to use the set of genes jointly

expressed in the source or destination neurons of a biclique to

unveil the potential biological mechanism responsible for thewir-

ing of the biclique.

For completeness, we analyzed all the commonly utilized con-

nectomes of C. elegans (synaptic connectome and a gap-junc-

tion network, from two reconstructions), finding significant

maximal bicliques in each map, and largely indistinguishable

maximal biclique significance diagrams (Figure 2C; Figure S1),

supporting the existence of unique, genetically driven mecha-

nisms. The fact that we find significant results despite the limited

expression coverage (covering 935 of around 20,000 genes in

C. elegans) suggests that the patterns we observe are robust

to data incompleteness.

The predictions of the connectomemodel can be tested in any

species for which neuronal-level connectomes are available. For

example, in addition to C. elegans, we have identified the

maximal biclique subgraphs in C. intestinalis CNS (N = 205, L =

2,974) (Ryan et al, 2016) and the D. melanogaster larva olfactory

circuit (N = 387, L = 3,690) (Berck et al., 2016; Eichler et al., 2017),

finding statistically significant maximal bicliques in each (see

STAR Methods), together with a maximal biclique distribution

that is very similar to the one observed in C. elegans (Figure 2E;

Figure S2), suggesting that our findings generalize to larger

networks. Definite evidence will eventually be provided by full

connectome maps currently under development in multiple or-

ganisms, complemented with matched gene expression data.

Extrasynaptic signaling, leading to a wireless connectome,

also plays a key role in brain function (Bentley et al., 2016) and

can be addressed within the framework introduced above, help-

ing us identify bicliques specific for each neuromodulator. In this

case, a biclique captures an S-set of neurons expressing sys-

tems to release octopamine and a D-set that expresses octop-

amine receptors.

The evidence we offered for C. elegans and other simple or-

ganisms raises the question whether the connectome model

could also help formalize the processes driving mammalian

wiring. Mammalian wiring is greatly affected by learning and

experience, potentially resulting in different local connectomes

in individuals of the same species (Edelman, 1987). Yet, the

large-scale architecture of mammalian brains, as captured by

fMRI scans and other tools (McGonigle et al., 2000; Telesford

et al., 2010; Choe et al., 2015), show remarkably reproducible

patterns across individuals of the same species, suggesting

that genetic factors shape some architectural features of the

underlying connectome (English et al., 2017; Han et al., 2018).

Further, biclique-like structures are observed in the reconstruc-

tion of the mouse retina wiring (Söhl et al, 2005). The biology

behind the underlying operator O can be linked to gap-junction

proteins, like connexin-36 (CX36), that couples rods and cones

through gap junctions. Further evidence is available in

D. melanogaster olfactory circuits: olfactory receptor neurons

expressing the same olfactory receptor (OR) converge onto
Neuron 105, 1–11, February 5, 2020 7
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the same set of projection neurons (PNs); hence, the olfactory

circuits are wired by a set of biclique operators that recognize

the OR identity of neurons and connect them onto a comple-

mentary set of PNs. It remains to be seen whether similar bicli-

que structure can be found in other circuits, particularly in brain

areas where random connectivity dominates for PN axon pro-

jections (Caron et al., 2013).

These studies hint that the connectome model, perhaps

applied to neuronal classes, rather than single neurons, may

help describe the genetic and developmental roots of the struc-

tural connectivity established during development, guiding the

brain’s large-scale architecture. For instance, experimental per-

turbations of a single TF in mice, changing the identity of

neuronal classes, have altered the native wiring patterns of

affected regions (Wester et al., 2019), supporting the TF-driven

wiring that the connectome model relies on. Nevertheless, the

cellular level connectome collected at mammalian adulthood is

expected to be significantly rewired by experience-driven

learning; thus, the wiring rules may only be observable if we

pair connectomic and genetic measurements through the

course of development. Thus, while the ideas behind the con-

nectome model may be fruitful for hypothesis building, testing

its applicability to mammals requires further development of

the proposed framework.

As we ponder the applicability of the model to C. elegans and

beyond, we must realize that the biclique operator defines only

the genetic potential of two neurons to connect. In both the

worm and, in particular, in higher organisms, given the highly

compartmentalized nature of the brain, neurons require a

wide range of additional genetic signals to synapse: two neu-

rons that have the complementary surface proteins may lack

the routing directions to meet and connect, resulting in incom-

plete biclique motifs, similar to the one seen in Figure 4C.

Further, incomplete bicliques may result from activity depen-

dent pruning or rewiring, such as the retinal waves involved in

activity patterning in the visual cortex (Ackman et al., 2012).

Our ability to reconstruct wiring rules that jointly consider ge-

netic factors and spatial guidance may be best informed by

considering more general types of bipartite structures, which

have a rich literature in economic networks (Saracco et al.,

2017; Straka et al., 2017, 2018). Such techniques may also bet-

ter account for overlapping bicliques, where multiple genetic

wiring rules can code for the same connections. Themathemat-

ical formalism behind the connectome model can be expanded

to systematically account for spatial effects and their impact on

the observed biclique distribution (unpublished data). These

developments could help us deconvolute axon routing from

connectomic matching, jointly utilizing projectomic and con-

nectomic datasets.

Such spatial effect also raises the question whether spatial

constraints could fully explain the reproducible wiring of the con-

nectome. Our analysis shows that brain models that connect

neurons based on their spatial proximity do indeed generate

some maximal bicliques (Ercsey-Ravasz et al., 2013). Yet, these

maximal bicliques are rooted in the fully connected local cliques

these models generate, which are absent in the C. elegans con-

nectome (see STAR Methods; Figure S3). As we show in the

STAR Methods, the observed maximal bicliques cannot be ex-
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plained by the canonical network models used in network sci-

ence either.

The hypothesis that genetic factorsmay contribute to neuronal

wiring emerged originally in the context of the chemoaffinity hy-

pothesis (Sperry, 1963). It states that synaptic connections are

driven by selective attachment mediated by specific molecular

identifiers encoded in the genome. Since its formulation in the

1960s, the hypothesis has helped identify genes that disrupt

the development of neuronal circuitry (Kaufman et al., 2006),

including axon guidance genes (sax-3, unc-34, unc-40) (Yu

et al., 2002), attractive and repulsive interactions (unc-6,

unc-40, and unc-5) (Hedgecock et al., 1990; Lim and Wads-

worth, 2002; Adler et al., 2006), presynaptic input modulation

(unc-4, unc-37) (Winnier et al., 1999), presynaptic differentiation

(sad-1) (Crump et al., 2001), and synaptic specificity genes (syg-

1, syg-2) (Shen et al., 2004). Evidence also comes from the HSNL

neuron (Shen et al., 2004), helping discover that the transmem-

brane proteins syg-1 and syg-2 bind together and guide the

neuron to form correct synapses. Candidate genes contributing

to synapse formation include the Dscam gene in Drosophila

(Chen et al., 2006) and the Protocadherin (Pcdh) proteins (Sha-

piro and Colman, 1999) and connexin genes (Belousov and

Fontes, 2013) in vertebrates. The connectome model builds on

the chemoaffinity hypothesis to offer a framework to systemati-

cally combine the connectome with expression data in order to

formulate experimentally falsifiable predictions for the wiring of

each specific subcircuit.

The connectomemodel represents a generativemodel for com-

plex networks, capable of generating graphs with a wide range of

network characteristics. We can, for example, generate a pure

random network by utilizing a separate operator for each link, in

which case the number of operators (or the necessary biological

mechanisms) scale as OðLÞ. This raises an important question:

what is the minimal number of distinct biological mechanisms

(i.e., distinct operators, O) required to explain the full

connectome? Formally the answer is within the grasp of graph

theory, as it corresponds to the minimum number of maximal

bicliques required to cover all links in the connectome, a difficult

(and likely NP- complete) algorithmic problem. Yet, limit theorems

common in combinatorial graph theory could predict this minimal

number, helping us estimate the smallest number of biological hy-

potheses needed to describe a connectome (Bollobás, 2001).

Finally, a major remaining challenge lies in developing compu-

tational tools to systematically identify combinatorial genetic

rules of neuronal wiring. Our work offers the theoretical frame-

work to aid efforts that aim to reconstruct wiring rules from

genetic data (Kaufman et al., 2006; Varadan, Miller and Anastas-

siou, 2006; Baruch et al., 2008). One could also use Bayesian

inference to predict rules of connectivity and the underlying ge-

netic rules, given spatial information and clustering-based cell

identity (Jonas and Kording, 2015). A formal matrix description

of the connectome model (unpublished data), incorporating

spatial, genetic, and connectomic data, offers a strong founda-

tion for inferring such wiring rules, with the added benefit of pre-

dicting rewiring patterns under genetic perturbations. Further

validation of the connectome model, or other inference frame-

works for the genetic basis of wiring, would benefit from the

recent availability of neuron-resolved single-cell RNA expression
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inC. elegans (Taylor et al., 2019), as well as techniques for devel-

opment-resolved connectivity and gene expression (Farrell et al.,

2018; Wagner et al., 2018).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Data Sources for C. elegans Connectome
The neural system of C. elegans consists of chemical synapses and gap junctions between 302 neurons. Graph theoretical analyses

of C. elegans connectomes typically restrict the circuit to the connected somatic nervous system of 279 neurons, excluding 20 neu-

rons in pharyngeal nervous system and 3 somatic neurons (CANL/R and VC06) that, in the Varshney et al. (2011) reconstruction, do

not synapse with other neurons. Each reconstruction offers two separate adjacency matrices: a directed chemical synapse network,

and an undirected gap junction network. We studied two different reconstructions:

The Varshney et. al. reconstruction maps the connectome relying on a combination of theWhite et. al. electron microscopy images

(White et al., 1986), and recent reconstruction updates. The resulting adjacency matrices contain 6,393 chemical synapses, 890 gap

junctions, and 1,410 neuromuscular junctions between 279 neurons. For this reconstruction, the synaptic adjacencymatrix has 2,194

directed links, and the gap junction network has 517 links, of which 3 are self-loops.

Cook et. al. reconstruct a chemical synapse adjacency matrix with 3,503 links, and a gap junction network with 1,051 undirected

links, including 11 self-loops (Cook et al., 2019). This reconstruction is utilized in the body of the paper, unless otherwise noted.

Data Sources of C. elegans Cell Identity
We obtained binary gene expression data from WormBase, which aggregates expression information of individual genes in

C. elegans from the literature. The data were hand-curated by experts to ensure ‘‘true zeros,’’ meaning that ‘‘1’’s in the data indicate

that a reporter transgene was found to be expressed in a given neuron, and ‘‘0’’s are in the case where the gene is not expressed.

Some neurons in the dataset express as few as 9 genes, while others over 140 genes, with an average of 32 expressed.

METHOD DETAILS

Brain Sizes Across Organisms
To generate in a reproducible manner the connectome of an organism, we need: (i) a way to create a labeled graph by offering a

unique ID to each neuron (cellular identity), and (ii) a method of storing the links between them (adjacency matrix). As we discuss

in themain text, b= log2ðNÞ TFs are sufficient for (i), generating a labeled network of N neurons. As Table S1 indicates, such encoding

requires only a small portion of the available TFs in C. elegans (9 needed out of 934 available) or in higher organisms (in humans, 33
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TFs are sufficient, out of the 1,391 known TFs) (White et al., 1986; Tang et al., 2001; Herculano-Houzel and Lent, 2005; Reece-Hoyes

et al., 2005, 2011; Ananthanarayanan et al., 2009; Azevedo et al., 2009; Vaquerizas et al., 2009; Lagercrantz et al., 2010; Zhang et al.,

2011; Varshney et al., 2011; Zheng et al., 2018).

Encoding the full adjacency matrix requires N2 bits of information. Let us assume that each neuron i ‘‘remembers’’ the address of

the other neurons it links to. The most efficient way to encode this is for each neuron i to remember and recognize only the addresses

of ki neurons it links to, ignoring the addresses of the N-ki >> ki neurons it does not synapse with. Yet, even such minimal encoding

imposes considerable information burden. For example C. elegans, with 302 neurons, must devote at least log2(302) = 9 of its TFs to

uniquely label each neuron. In principle, each neuron could use its remaining TFs to ‘‘store’’ the barcode of the neurons it connects to,

in log2ðNÞ chunks. Naively, this implies that AVAR, a neuron with k = 62, must reserve k � log2ðNÞ= 558 of its TFs to encode the

address of the 62 neurons it can synapsewith, or 60%of the available TFs. For higher organisms, we can approximate the information

required using < k > *log2ðNÞ, which significantly exceeds the number of available TFs (Table S1), requiring 1,700 TFs in Drosophila

and nearly 700,000 in humans. This suggests, that the brain cannot encode each link at the TF level. It can do so, however, if it uses

selective coding, as described by the proposed connectome model.

Maximal Biclique Enumeration Algorithm
Enumerating all biclique motifs in a network is a computationally intensive problem. Indeed, a naive approach must test all 22N

possible biclique subsets of the N source and destination nodes. Specifically, we are interested in non-induced bicliques, in which

the source and destination sets can overlap. Furthermore, wewish to account for all maximal bicliques, meaning that we focus on the

largest non-induced bicliques that can be constructed, and not their sub-sets. For instance, if we find a biclique that links {a,b,c} to

{c,d,e}, and no further nodes can be added to the set (i.e., there is no node f such that a, b, and c all connect to f as well), we do not

want to count separately the biclique, such as {b,c} connecting to {c,e}, a subset of the larger biclique.

We used the Maximal Biclique Enumeration Algorithm (MBEA) to identify all maximal bicliques in a bipartite graph (Zhang et al.,

2014). The algorithm considers the input to be a bipartite graph, assuming the source and destination sets to be distinct, thereby

generating non-induced bicliques (separate provisions to eliminate non-induced bicliques would require extra computational steps).

The algorithm develops recursion trees to perform the biclique searches, constantly buildingmaximal bicliques from growing subsets

of the source and destination nodes. The efficiency of the algorithm is boosted by eliminating from the search space regions of the

graph where maximal bicliques are absent. The algorithm runs in minutes even on large networks (782 3 45,137 bipartite graph)

(Zhang et al., 2014). However, larger connectomes are expected to exceed this size (the fly brain is estimated to contain 100,000

neurons), thus more efficient algorithms may be needed to explore the connectomes of higher organisms.

Degree-Preserving Randomization
When examining the importance of bicliques in the connectome, it is important to understand whether such subgraphs can naturally

emerge in a network of similar size and degree sequence. For this, we compare the observed subgraphs with subgraphs in appro-

priately randomized networks. We started with full randomization (preserving only N and density, i.e., turning the random reference

into Erd}os-Rényi random networks), which shows high significance. Given the unique degree sequence of the C. elegans connec-

tome, with its hubs forming a rich-club (Colizza et al., 2006; Towlson et al., 2013), degree-preserving randomization offers a more

appropriate reference frame (Maslov and Sneppen, 2002). More elaborate randomization techniques also exist that better account

for dense graphs (Zlatic et al., 2009), or, as in exponential random graph models, account for noise in the network reconstruction

process by utilizing the overall network statistics, rather than the exact degrees observed (Cimini et al., 2019). We utilize theMATLAB

software developed by Sergei Maslov (Maslov and Sneppen, 2002) for degree-preserving randomization of directed graphs for

the chemical synapse connectome, and undirected degree-preserving randomization for gap junctions. The algorithm randomly

chooses two edges (e.g., A/B and C/D) and swaps the involved nodes (e.g., A/D and C/B), thereby preserving the total num-

ber of connections each node makes. This process is performed 4L times, where L is the number of connections in the network.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bicliques in the C. elegans Connectome
Using MBEA, we enumerate all unique maximal bicliques in the C. elegans connectomes (Figure S1) as well as in their degree-ran-

domized version.We find that in both synaptic connectomes the number ofmaximal bicliques significantly outnumbers the number of

maximal bicliques observed after degree-preserving randomization, with Z-scores ranging from 3 to 20 (Figure S1A).

To calculate the significance of the number of maximal bicliques, we performed multiple testing corrections for the number of

unique SxD biclique sizes observed in the network that are randomized. For instance, in Figure 2, we find 182 biclique types, thus

significance was considered at p = 0.05/182 = 0.00027, corresponding to a Z-threshold of 3.4. We define over-represented bicliques

as Z > 2*, where * indicates the correction. Under-represented bicliques are Z < �2*, and non-significant bicliques are �2* < Z < 2*.

We find that larger maximal bicliques are significantly overrepresented in the connectome (Figure 2). At the same time, smaller

maximal bicliques are often under-represented in the connectome, or, in the case of the Varshney et. al. reconstruction, not statis-

tically significant. We find larger maximal bicliques in the Cook et. al. reconstruction (e.g., 5x8maximal bicliques are not present at all

in Varshney et. al.), however this can again be attributed to the higher density of the Cook et. al. reconstruction.
Neuron 105, 1–11.e1–e5, February 5, 2020 e2
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We ran MBEA on the two gap junction connectomes as well, treating it as an undirected network. As with the chemical synapses,

we find that the number of maximal bicliques is significantly larger than expected in the degree-preserved random reference con-

nectome (Table S2), and that larger maximal bicliques are significantly overrepresented.

Gene Expression Patterns
Similarity Metrics

To quantify how similar is the expression pattern of two neurons, we use themean square contingency coefficient (MSCC) which was

shown (Arnatkevici�ut _e et al., 2018) to be less biased by sparse expression data than the Jaccard index or Yule’s Q:

rf =
n11n00 � n10n01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1�n0�n�0n�1
p :

Here nxy enumerates possible binary pairings, such that n01 =
P

idxi ;0dyi ;1 and n1� =
P

idxi ;1, where * stands for ‘‘or.’’ The MSCC is

maximal ðrf = 1Þ when two neurons express exactly the same set of genes and minimal ðrf = �1Þ when the expression patterns

of the two neurons mirror each other (i.e., one has 0 the other has 1).

To establish the statistical significance of the expression based similarity for a given set of S or D neurons in a biclique, wemeasure

all pairwise similarities between the number of neurons, and use a two-sample Kolmogorov-Smironov test to decide if the pairwise

distribution’s empirical cdf is larger than the distribution of pairwise genetic similarities between all 279 neurons.We find 1,964 source

sets and 3,570 destination sets significant using this metric, with 955 maximal bicliques showing significance for both S and D sets.

For all gene expression analyses we consider statistical significance to be p < 0.0125 to correct for multiple comparisons.

Gene Co-Expression

The connectomemodel (Figure 1) predicts that each biological operator recognizes a set of genes, suggesting that the neurons in an

S or D set of the same biclique do not represent a random subset of neurons, but have common TF expression patterns, reflecting the

biological mechanism captured by the operator O. In other words, the expression pattern of multiple TFs recognized by O (and the

genes directly driven by them) must be in common. This suggests that the expression pattern of the neurons must display detectable

similarities. To test this, for each S or D set we count the number of co-expressed genes, and compare it to the number of co-ex-

pressed genes expected in 1,000 similarly sized sets of randomly chosen neurons. We find that 1,279 source and 2,263 destination

sets are significant under this metric.

To check the robustness of this result, we performed multiple randomizations that are better informed on the selection of compa-

rable nodes:

Class-Based Expression Patterns

When experiments map the genes of neurons, often class-based indicators are used, meaning that every neuron in the same class is

assumed to express a gene, even if it is only observed to be expressed in a single neuron of the class. To account for this, we reduced

each maximal biclique to the number of unique classes present in them and compared with distributions of 1,000 randomizations of

similar size. For instance, in a set of size 4, where two neurons are of the same class, we compare with random choices of three nodes

for different classes. We find that 509 Source sets and 1,006 Destination sets remain significant under this more stringent metric.

Degree Preservation

Given the finding that rich-club hub nodes show higher degree of correlations in gene expression (Arnatkevici�ut _e et al., 2018), as a

second robustness metric we normalize for degree. For this, we group nodes into three degree categories (‘low’, ‘medium’, and

‘high’) and always replace nodes within their degree category during the 1,000 randomizations. We find that 768 source sets and

1,647 destination sets remain significant under this more stringent metric.

Additional Test for Biological Significance
Given the extensive characterization of the C. elegans neurons, we can use additional metrics of cell identity to test the genetic

similarity of the S and D sets selected by the bicliques. As the TFs recognized by the biological operator O contribute to a neuron’s

transcriptional identity, we predict that the neurons in the same S (or D) sets should also be similar to each other across multiple

morphological, functional, and developmental characteristics. Next we offer evidence of the validity of this prediction.

Lineage Distance

The developmental lineage in C. elegans defines the coalescence distances between neurons, which captures their developmental

similarity. We identified pairwise lineage distances between all source-source and destination-destination neuron combinations, and

used a two-sample Kolmogorov-Smironov test to test the alternative hypothesis that the real pairwise distribution’s empirical cdf is

smaller than the distribution of pairwise lineage distances between all 279 neurons. In lineage distances a smaller value indicates that

the two cells have fewer divisions between them. Looking at all maximal bicliques, we find 1,494 significant source sets and 1,717

destination sets, with 235 maximal bicliques significant for both source and destination neurons.

Neuronal Classes

TheC. elegans neurons have been classified into 118 neuronal classes based on their anatomical similarities, each class containing 1

to 13 neurons. The restricted connectome of 279 neurons contains 103 of these classes. As a neuron’s morphological features

are ultimately driven by gene expression, class membership represents a coarse-grained proxy for expression pattern similarity.
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According to our model, the neurons found in the same S or D set should share the expression of the genes selected by the corre-

sponding operator O. We therefore expect that each biclique set should be enriched in class membership.

To test the validity of the above prediction, we tested for class enrichment in each biclique by finding the size of the largest class in

each S/D set. For instance, if a source set of 8 neurons has 3 neurons in class A, 2 in class B, and the remaining 3 neurons alone in

classes C, D, and E, we take class A to be the largest class. We calculate the probability of finding 3 neurons of the same size of class

together when we randomly select 8 neurons. This probability can be written as

p = numðCÞ �

�
279� C
U�M

��
C
M

�
�
279
U

� ;

where U is the set size, M is the max number of neurons of one class found in the set, C is the number of neurons in the largest class,

and num(C) indicates the multiplicity of sizeC classes. Extending this analysis to all maximal biclique motifs, we find 1,973 significant

source and 3,070 significant destination sets, with 845 maximal bicliques showing significance for both source and destination

neurons.

Neurotransmitter Enrichment

C. elegans neurons utilize seven unique neurotransmitters, with 11 neurons expressing more than one neurotransmitter and 24 neu-

rons have unknown neurotransmitters. The remaining 244 neurons each have a unique neurotransmitter assigned, one of the seven.

As neurotransmitter expression also acts as a proxy for neuronal identity, we examined the neurotransmitter enrichment in the S and

D sets for each biclique motif. Enrichment was found similar to class enrichment: the most commonly expressed neurotransmitter

was identified in a given set and compared to the probability of finding that same number of similar neurotransmitter in a random

reference set of neurons. When we extend the analysis to all maximal bicliques, we find 1,519 source and 1,641 destination sets sig-

nificant in the chemical synapse data, and 261 maximal bicliques have significant enrichment in neurotransmitters for source and

destination neurons.

Type Enrichment

Neurons have also been categorized in three classes, sensory, interneuron, or motor neuron, according to the function they play in

C. elegans, once again offering a proxy for neuronal identity. We determined enrichment for neuronal type in bicliques with methods

similar to those utilized for neurotransmitter and class enrichment. Under type enrichment, we find 1,955 source sets and 2,710 desti-

nation sets to show significant enrichment, with 564 maximal bicliques displaying significance for both S and D sets.

Biclique Motifs in Other Organisms
AlthoughC. elegans offers the only complete connectome for a full organism, partial reconstructions in other organisms are available,

which allows us to test the network-level predictions of the connectome model.

Ciona Intestinalis

A recent connectome for a tadpole larva of a sea squirt,Ciona intestinalis, offers a partial mapping of a second central nervous system

(Ryan, Lu andMeinertzhagen, 2016). The published data consider 177 neurons and the cells they synapsewith, resulting in a 205x215

adjacency matrix with 7.04% density. We restricted our analysis to the largest connected component of the complete subgraph

of the dataset, to better compare with the complete mapping of C. elegans, resulting in a 197x197 matrix with 7.66% density

(< k > = 15.1).

UsingMBEA, we found 29,689maximal bicliques in the chemical synapse connectome, while only 15,494 ± 333maximal bicliques

under degree preserving randomization, resulting in Z = 44.612. This finding indicates that, just like C. elegans, there is a highly sig-

nificant number of maximal bicliques that can’t be explained by the degree distribution. As with the C. elegans chemical synapse

connectome, we find that large maximal bicliques are overrepresented in the connectome, and smaller maximal bicliques are either

under expressed or not significant (Figure S2). This indicates that themaximal biclique structure predicted by our model is not limited

to C. elegans but is present in other organisms as well.

Drosophila

Ongoing efforts to map the wiring of Drosophila fruit flies have yielded EM reconstructions of both the adult and larval fly, resulting in

the published connectome of the early olfactory system (Berck et al., 2016; Eichler et al., 2017). We investigated themaximal biclique

structure of the mushroom body, consisting predominantly of Kenyon Cells and Projection Neurons. In order to account for noise in

the reconstruction, we considered connections with a weight of at least 5 synapses. The resulting network includes 387 neurons with

3,690 links between them, at 2.46% density and < k > = 9.53.

We found 34,080 maximal bicliques among the chemical synapses, a number that by itself is highly significant compared to the

27,100 ± 1,100 maximal bicliques found under degree-preserving randomization (Z = 6.48). We also found much larger maximal bi-

cliques than in C. instestinalis and C. elegans, and the large maximal bicliques continue to be significantly overrepresented

(Figure S2).
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Bicliques in Network Models
Could the existing models of complex networks explain the exceptional density and the nature of bicliques observed in C. elegans?

To answer that, we explored several reference models: the Erd}os-Rényi model of random networks (ER) (Erdös and Rényi, 1959), a

growth model of scale-free (SF) networks (Barabási and Albert, 1999), and the neuronal network model built on the exponential dis-

tance rule (EDR) (Ercsey-Ravasz et al., 2013), proposed to capture the linking probabilities of interareal networks.

Erd}os-Rényi Model

While there are some smaller maximal bicliques in networks generated by the ERmodel, none of them are significant. This is a direct

consequence of the fact that the reference randomized networks used to determine the statistical significance of the observed

maximal bicliques, are indistinguishable from the random network we are exploring. The same is true for networks generated by

the configuration model (independent of the underlying degree distribution), meaning that while these networks may generate

some maximal bicliques, the observed maximal bicliques lack statistical significance by construction.

Exponential Distance Rule Model

The EDR model was proposed to describe brain wiring, its rules integrating the empirically observed distances of brain regions.

Inspired by EDR measurements in C. elegans (Ahn, Jeong and Kim, 2006), we generated networks of density of 4.5% by placing

N = 279 nodes on a square lattice with periodic boundary conditions, connecting nodes with probability pðdÞ= expð�ldÞ, where

d is the Euclidean distance between nodes and l= 10:88, which was chosen to match the link density of C. elegans (Ercsey-Ravasz

et al., 2013). The maximal biclique analysis does identify statistically significant maximal bicliques. Yet, a close inspection of the

maximal bicliques generated by the EDR model indicate that they are different from those observed in C. elegans, being rooted in

fully connected cliques.

Indeed, by connecting most nodes within the same geographic vicinity, the model generates fully connected cliques, i.e., specific

type of maximal bicliques that have not only direct S/D links, but also the nodes in the D and the S sets are also significantly (or fully)

linked to each other. Indeed, we find that of themaximal bicliques generated by the EDRmodel, all sets have a statistically significant

number of links among the D (or S) nodes. In contrast, in C. elegans only 37.9% S sets show statistically significant number of links

(p < 0.05, defined as greater than 25% link density), and 35.2% for the D sets. If we disregard the maximal bicliques with densely

connected D or S sets (i.e., those that show statistical significance), all statistically significant maximal bicliques disappear from

the EDR model. In contrast, the same procedure applied to the C. elegans maximal bicliques leaves most statistically significant

maximal bicliques unperturbed.

Scale-free Model

We implemented a growthmodel of SF networks (mindful of the fact that theC. elegans network is too small to decide the nature of its

precise degree distribution, and measurements point toward an exponential P(k)). We generated using the SF model (Barabási and

Albert, 1999) a network with m = 13 and N = 279, chosen to match the size and the link density of the C. elegans connectome, and

identified themaximal bicliques, and their statistical significance.We do find statistically significant maximal bicliques that are rooted

in the evolutionary nature of the model. Indeed, the first m nodes tend to acquire the most links, which become the hubs of the re-

sulting network. With a non-zero probability, the later nodes connect their m links to the first (and the largest) m nodes, generating

multiple maximal bicliques.

This observation predicts two features: (i) Themaximal biclique significance spectrum is not stationary, but as the network grows, it

will lead to larger and larger out-degree (S) maximal bicliques, all linked to subsets the first m-nodes. (ii) Themaximal outdegree of the

statistically significant maximal bicliques will be m (D set). Simulations confirm both predictions (Figure S3).

To test our insights that the observed maximal bicliques are all anchored on the first m nodes, we removed thesem nodes from the

network, which results in the loss of statistical significance of the remaining maximal bicliques (Figure S3).

Taken together, we find that current network models cannot explain the maximal biclique structure observed in C. elegans and

other organisms. Evolving models, like the SF model, generate a non-stationary maximal biclique structure, in which all maximal bi-

cliques are anchored on the first m nodes with the highest degrees. Spatial models, in contrast, generate (almost) fully connected

cliques, different from the structure of the maximal bicliques observed in C. elegans. This suggests that we need to invoke biological

mechanisms to explain the roots of the observedmaximal bicliques structure seen in brain networks. Nevertheless, an open question

is how to systematically incorporate the spatial nature of the connectome into the framework. This is possible once we mathemat-

ically formulate the spatial contribution to the connectome model (unpublished data).

DATA AND CODE AVAILABILITY

We provideMATLAB code for the identification and analysis of bicliques in connectomes in the public repository with https://doi.org/

10.5281/zenodo.2699419. The analyses of the study utilized a number of publicly available software packages which could not be

reproduced in the repository, but can be found through in-text citations and the Key Resources Table.
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Supplementary Table 1: Neurons, synapses, and transcription factors. (Related to Results: 
"Encoding Neuronal Identity" and  Star Methods: "Brain Sizes Across Organisms") We compiled 
from the literature the number of neurons, synapses and transcription factors for various organisms. For 
each organism, we also show b = log2(N), representing the number of TFs minimally required to offer a 
unique identity to all neurons in a brain. Notice that the number of TFs in each organisms exceeds b, 
indicating that TF combinations can reasonably offer unique cellular identity to each neuron. 

Organism Neurons Synapses TF b = [log2(N)] Data Source 

C. elegans 302 6398 934 9 
(White et al., 1986; Reece-Hoyes et al., 2005, 

2011; Varshney et al., 2011) 

Fruit Fly 100,000 107 627 17 
(Lagercrantz et al., 2010; Zhang et al., 2011; 

Zheng et al., 2018) 

Mouse 7.09*106 1.28*1011 1,457 23 
(Ananthanarayanan et al., 2009; Zhang et al., 

2011) 

Rat 2*108 4.48*1011 1,371 28 
(Herculano-Houzel and Lent, 2005; 

Ananthanarayanan et al., 2009; Zhang et al., 

2011) 

Cat 7.63*108 6.1*1012 887 30 
(Ananthanarayanan et al., 2009; Zhang et al., 

2011) 

Human 8.1*109 1.64*1014 1,391 33 
(Tang et al., 2001; Azevedo et al., 2009; 

Vaquerizas et al., 2009) 
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Supplementary Figure 1: Bicliques in C. elegans connectome reconstructions. (Related to Star 
Methods: "Quantification and Statistical Analysis") a) Biclique Numbers in Each Studied 
Connectome. The entries show the number of maximal bicliques found in the real (Connectome) and 
randomized (Random) networks, together with the overall Z-score. b) Biclique Size Distributions for 
Connectomes under degree preserving randomizations. Z-scores of maximal biclique sizes under 
degree-preserving randomization. Blue squares show maximal bicliques that are underrepresented in 
the real connectome compared to the random reference (Z < -3.4) — they capture small maximal 
bicliques (2 ® n, or n ® 2) that emerge frequently by chance. Red squares capture maximal bicliques 
that are overrepresented in the real data (Z > 3.4). Black maximal bicliques exist but their numbers are 
non-significant   (-3.4 < Z < 3.4). White region corresponds to maximal bicliques that are absent in the 
connectome. Significance was set at Z = 3.4 to correct for multiple testing for each of the biclique types, 
with the most stringent cutoff used for all datasets for consistency. The higher density of Cook datasets 
over the Varshney reconstruction is apparent in the larger maximal bicliques found, as well as the 
reduced number of non-significant maximal bicliques. The gap junction matrix is less sparse, however 
the larger maximal bicliques are more significant, as expected. c) Biclique Sizes Under Erdös-Rényi (ER) 
Distributions. Z-scores of maximal biclique sizes compared to ER random networks with matching 
density and node number. Given the low structure of ER random networks, the increased significance of 
maximal biclique sizes should be expected.  

Bicliques

<k>
Connectome

(number)

Random

(number)
Z-Score

Chemical 

Synapses

Varshney et. al. 7.86 2,968 2,723.6±44.0 5.5573

Cook et. al. 12.6 9,430 7,569.4±92.3 20.149

Gap 

Junctions

Varshney et. al. 3.70 344 314.34±8.90 3.334

Cook et. al. 7.49 1,706 1,059.5±82.01 7.883
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Supplementary Figure 2: Bicliques in connectomes of other organisms. (Related to Star Methods: 
"Biclique Motifs in Other Organisms") (a) Biclique sizes under degree-preserving randomization for 
Ciona instestinalis. Blue square is z-score less than -3.7, red square is z-score greater than 3.7, black 
indicates non-significant z-score   (-3.7<Z<3.7), while white indicates that no maximal bicliques of the 
given size were found in the chemical connectome. The significant z-score cutoff was set at 3.7 to 
account for multiple testing corrections, with a more stringent threshold used for both connectomes in 
this figure based on the many types of bicliques found in the Drosophila connectome. (b) Biclique sizes 
under degree-preserving randomization for olfactory subcircuit of Drosophila larvae.   
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Supplementary Figure 3: Bicliques in network models. (Related to Results: "Bicliques in C. 
elegans" and Star Methods: "Bicliques in Network Models") (a) Bicliques in Erdös-Rényi model. We 
generated a random graph of 279 nodes and 4.5% density, to match the size and average degree of the 
chemical connectome of C. elegans. As expected, we observe no significant maximal bicliques 
compared to degree preserved randomizations. Z-score significance cutoffs for all of Supplementary 
Figure 3 were set to a more stringent 3.4 standard deviations to match the thresholds in Figure 2 and 
Supplementary Figure 1, even though many fewer bicliques types were found in all plots of 
Supplementary Figure 3. (b) EDR model of C. elegans connectome. An exponential distance rule 
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network fit to the C. elegans connectome with λ = 10.88, compared to degree preserved randomizations. 
(c-e) Networks generated using the scale-free model with N = 279 to match the size of the C. elegans 
connectome. The different panels correspond to different densities, generated with (c) m = 5, (d), 8, and 
(e) 13, demonstrating the non-stationary nature of the resulting maximal bicliques. (f) Coreless Scale 
Free Network. We removed the first m = 13 nodes (core) from the network profiled in (e). The resulting 
network has fewer large maximal bicliques, and all maximal bicliques are statistically underrepresented 
or nonsignificant. 
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