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Percolation in directed scale-free networks
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Many complex networks in nature have directed links, a property that affects the network’s navigability and
large-scale topology. Here we study the percolation properties of such directed scale-free networks with
correlatedin and out degree distributions. We derive a phase diagram that indicates the existence of three
regimes, determined by the values of the degree exponents. In the first regime we regain the known directed
percolation mean field exponents. In contrast, the second and third regimes are characterized by anomalous
exponents, which we calculate analytically. In the third regime the network is resilient to random dilution, i.e.,
the percolation threshold ispc→1.
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Recently the topological properties of large complex n
works such as the Internet, the World Wide Web~WWW!, an
electric power grid, and cellular and social networks ha
drawn considerable attention@1,2#. Some of these network
are directed, for example, in social and economical netwo
if nodeA gains information or acquires physical goods fro
nodeB, it does not necessarily mean that nodeB gets similar
input from nodeA. Likewise, most metabolic reactions a
one directional, thus changes in the concentration of m
ecule A affect the concentration of its productB, but the
reverse is not true. Despite the directedness of many
networks, the modeling literature, with few notable exce
tions @3–5#, has focused mainly on undirected networks.

An important property of directed networks can be ca
tured by studying their degree distribution,P( j ,k), or the
probability that an arbitrary node hasj incoming andk out-
going edges. Many naturally occurring directed networ
such as the WWW, metabolic networks, citation networ
etc., exhibit a power-law, orscale-freedegree distribution for
the incoming or outgoing links:

Pin(out)~ l !5cl2l in(out), l>m, ~1!

wherem is the minimal connectivity~usually taken to bem
51), c is a normalization factor, andl in(out) are the in~out!
degree exponents characterizing the network@6,7#. An im-
portant property of scale-free networks is their robustnes
random failures, coupled with an increased vulnerability
attacks@8–12#. Recently it has been recognized that this fe
ture can be addressed analytically in quantitative te
@9–11# by combining graph theoretical concepts with ide
from percolation theory@13–15#. Yet, while the percolative
properties of undirected networks are much studied, little
known about the effect of node failure in directed networ
As many important networks are directed, it is important
fully understand the implications to their stability. Here w
show that directedness has a strong impact on the percol
properties of complex networks and we draw a detai
phase diagram.

The structure of a directed graph has been character
in @3,4#, and in the context of the WWW in@7#. In general, a
directed graph consists of a giant weakly connected com
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nent ~GWCC! and several finite components. In the GWC
every site is reachable from every other, provided that
links are treated as bidirectional. The GWCC is further
vided into a giant strongly connected component~GSCC!,
consisting of all sites reachable from each other followi
directed links. All the sites reachable from the GSCC a
referred to as the giant OUT component, and the sites fr
which the GSCC is reachable are referred to as the gian
component. The GSCC is the intersection of the IN and O
components. All sites in the GWCC, but not in the IN a
OUT components, are referred to as the ‘‘tendrils’’~see Fig.
1!.

For a directed random network of arbitrary degree dis
bution the condition for the existence of a giant compon
can be deduced in a manner similar to@9#. If a site, b, is
reached following a link pointing to it from sitea, then it
must have at least one outgoing link, on average, in orde
be part of a giant component. This condition can be writ
as

^kbua→b&5 (
j b ,kb

kbP~ j b ,kbua→b!51, ~2!

where j and k are the in and out degrees, respective
P( j b ,kbua→b) is the conditional probability given that sit
a has a link leading tob, and ^kbua→b& is the conditional
average. Using Bayes rule we get

P~ j b ,kbua→b!5P~ j b ,kb ,a→b!/P~a→b!

5P~a→bu j b ,kb!P~ j b ,kb!/P~a→b!.

FIG. 1. Structure of a general directed graph.
©2002 The American Physical Society04-1
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For random networksP(a→b)5^k&/(N21) and P(a
→bu j b ,kb)5 j b /(N21), where N is the total number of
nodes in the network. The above criterion thus reduce
@3,4#

^ jk&>^k&. ~3!

Suppose a fractionp of the nodes is removed from th
network. ~Alternatively, a fractionq512p of the nodes is
retained.! The original degree distribution,P( j ,k), becomes

P8~ j ,k!5 (
j 0 ,k0

`

P~ j 0 ,k0!S j 0

j D ~12p! j pj 02 j

3S k0

k D ~12p!kpk02k. ~4!

In view of this new distribution, Eq.~3! yields the percola-
tion threshold

qc512pc5
^k&

^ jk&
, ~5!

where averages are computed with respect to the orig
distribution before dilution,P( j ,k). Equation~5! indicates
that in directed scale-free networks if^ jk& diverges thenqc
→0 and the network is resilient to random breakdown
nodes and bonds.

The term^ jk& may be dramatically influenced by the a
pearance of correlations between the in and out degree
the nodes. In particular, let us consider scale-free distr
tions for both the in and out degrees

Pin~ j !;H Bcin j 2l in, j 5” 0

12B, j 50
~6!

and

Pout~k!5coutk
2lout. ~7!

In Eq. ~6! we choose to add the possible zero value to the
degree in order to maintain̂j &5^k&. If the in and out de-
grees are uncorrelated, we expect^ jk&5^ j &^k&. For several
real directed networks this equality does not hold. For
ample, the network of Notre Dame University WWW@6# has
^k&5^ j &'4.6, and thuŝ j &^k&521.16. In contrast, measu
ing directly we find^ jk&'200, about an order of magnitud
larger than the result expected for the uncorrelated case.
yields an estimate ofqc'0.02, i.e., a very stable directe
network. We obtained similar results also for some metab
networks@16#, indicating that in real directed networks, th
in and out degrees are correlated.

To address correlations, we model it in the followin
manner: we first generate thej values for the entire network
Next, for each site withj 5” 0 with probabilityA we generate
k fully correlated withj, i.e., k5k( j ). Assuming thatk( j ) is
a monotonically increasing function then the requirem
coutk

2loutdk5cin j 2l ind j—needed to maintain the distribu
tions scale-free—leads toklout215 j l in21. With probability
12A, the degreek is chosen independently fromj,
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P~ j ,k!;H ~12A!Bcin j 2l incoutk
2lout

1BAcoutk
2loutd j , j (k) , j 5” 0

~12B!coutk
2lout, j 50,

~8!

where j (k)5k(lout21)/(l in21). With this distribution, any fi-
nite fractionBA of fully correlated sites yields a divergin
^ jk& whenever

~lout22!~l in22!<1, ~9!

causing the percolation threshold to vanish~see Fig. 2!.
In the case of no correlations between the in and the

degrees,A50, Eq. ~8! becomesP( j ,k)5Pin( j )Pout(k).
Then the condition for the existence of a giant componen
^k&5^ j &51. Moreover, Eq.~5! reduces to

qc512pc5
1

^k&
. ~10!

Applying Eq. ~10! to scale-free networks one concludes th
for lout.2 andl in.2 a phase transition exists at a fini
qc . Here we concern ourselves with the critical expone
associated with the percolation transition in scale-free n
work of lout.2 andl in.2 which is the most relevant re
gime ~Fig. 2!.

Percolation of the GWCC can be seen to be similar
percolation in the non-directed graph created from the
rected graph by ignoring the directionality of the links. Th
threshold is obtained from the criterion@9#

qc5
^k&

^k~k21!&
. ~11!

Here the connectivity distribution is the convolution of the
and out distributions

P8~k!5(
l 50

k

P~ l ,k2 l !. ~12!

Regardless of correlations,P8(k) is always dominated by
the slower decay exponent, therefore percolation of
GWCC is the same as in nondirected scale-free netwo
with le f f5min(lin ,lout). Note that the percolation threshol
of the GWCC may differ from that of the GSCC and the I
and OUT components@4#.

FIG. 2. Phase diagram of the different regimes for the IN co
ponent of scale-free correlated directed networks. The bound
between resilient and anomalous exponents is derived from Eq~9!
while that between anomalous exponents and mean field expon
is given by Eq.~24! for l!54. For the diagram of the OUT com
ponentl in andlout change roles.
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We now use the formalism of generating functions@17,18#
to analyze percolation of the GSCC and IN and OUT co
ponents. In@3,4# a generating function is built for the join
probability distribution of outgoing and incoming degree
before dilution:

F~x,y!5(
k, j

P~ j ,k!xjyk. ~13!

Using the approach of Callawayet al. @10# let q( j ,k) be the
probability that a vertex of degree (j ,k) remains in the net-
work following dilution. The generating function after dilu
tion is then

G~x,y!5(
k, j

P~ j ,k!q~ j ,k!xjyk. ~14!

From Eq.~14! it is possible to define the generating functio
for the outgoing degreesG0 :

G0~y![G~1,y!5(
k, j

P~ j ,k!q~ j ,k!yk. ~15!

The probability of reaching a site by following a specific lin
is proportional to jP( j ,k), therefore, the probability o
reaching an occupied site following a specific directed link
generated by

G1~y!5

(
j ,k

jP~ j ,k!q~ j ,k!yk

(
j ,k

jP~ j ,k!

. ~16!

Let H1(y) be the generating function for the probabili
of reaching an outgoing component of a given size by f
lowing a directed link, after a dilution.H1(y) satisfies the
self-consistent equation:

H1~y!512G1~1!1yG1„H1~y!…. ~17!

SinceG0(y) is the generating function for the outgoing d
gree of a site, the generating function for the probability t
n sites are reachable from a given site is

H0~y!512G0~1!1yG0„H1~y!…. ~18!

For the case where correlations exist, and assuming ran
dilution: q( j ,k)5q, Eqs.~17! and ~18! reduce to

H1~y!512q1
qy

^ j & (
k

@BA j~k!1~12A!

3^ j &#Pout~k!H1~y!k ~19!

and

H0~y!512q1qy(
k

Pout~k!H1~y!k. ~20!

If A→0, one expects thatH0(y)5H1(y), since there is no
correlation betweenj and k, thus the probability to havek
outgoing edges isPout(k) whether we choose the site ra
domly or weighted by the incoming edgesj.
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H0(1) is the probability to reach an outgoing compone
of anyfinite size choosing a site. Thus, below the percolat
transition H0(1)51, while above the transition there is
finite probability to follow a directed link to a site which is
root of an infinite outgoing component:P`512H0(1). It
follows that

P`~q!5qS 12(
k

`

Pout~k!ukD , ~21!

whereu[H1(1) is the smallest positive root of

u512q1
q

^ j & (
k

@BA j~k!1~12A!^ j &#Pout~k!uk.

~22!

Here P`(q) is the fraction of sites from which an infinite
number of sites is reachable. Equation~22! can be solved
numerically and the solution may be substituted into E
~21!, yielding the size of the IN component at dilutionp
512q.

Near criticality, the probability to start from a site an
reach a giant outgoing component followsP`;(q2qc)

b.
For mean-field systems~such as infinite-dimensional sys
tems, random graphs, and Cayley trees! it is known thatb
51 @19#. This regular mean-field result is not always vali
Instead, following@20# we study the behavior of Eq.~22!
nearq5qc ,u51, and find

b55
1

32l!
, 2,l!,3

1

l!23
, 3,l!,4

1, l!.4,

~23!

where

l!5lout1
l in2lout

l in21
. ~24!

We see that the order parameter exponentb attains its usual
mean-field value only forl!.4. Aslout→l in the correlated
fraction BA of sites resembles nondirected networks@20,21#
~where there is no distinction between incoming and out
ing degrees!. In this case we getl!5lout5l in for any
amount of correlationA. The criterion for the existence of
giant component is then̂k2&/^k&51, and not 2 as in the
nondirected case. The difference stems from the fact tha
the nondirected case one of the links is used to reach the
while in the directed case there is generally no correlat
between the location of the incoming and outgoing link
Therefore, one more outgoing link is available for leavi
the site.

Without any correlations,A50, different terms prevail in
the analysis and

b5H 1

lout22
, 2,lout,3

1, lout.3.

~25!
4-3
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This is the same as Eq.~23! but with l!5lout11.
The GSCC is the intersection of the IN and OUT comp

nents. Therefore, it behaves as the smaller of the two c
ponents:bGSCC5max(bin ,bout). This can be also derived b
applying the same methods as for the IN and OUT com
nents to the generating function of the GSCC obtained in@4#.
The exponent for the GWCC, on the other hand, is indep
dent of the exponents of the other components, since
transition point is different.

It is known that for a random graph of arbitrary degr
distribution the finite clusters follow the scaling form

n~s!;s2te2s/s* , ~26!

wheres is the cluster size andn(s) is the number of clusters
of sizes. At criticality s* ;uq2qcu2s diverges and the tail o
the distribution follows a power law.

The probability thats sites can be reached from a site
following links at criticality follows p(s);s2t, and is gen-

TABLE I. Values ofl! for the different network components fo
both correlated and uncorrelated cases.

Uncorrelated Correlated

GWCC min(lout ,lin)11 min(lout ,lin)

IN lout11 lout1
lin2lout

lin21

OUT l in11 lin1
lout2lin

lout21

GSCC min(lout ,lin)11 min(lout* ,lin* )
v.

y

go

e
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e
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erated byH0, whereH0(y)5(sp(s)ys. As in @20#, H0(y)
can be expanded from Eq.~18!. In the presence of correla
tions we find

t55 11
1

l!22
, 2,l!,4

3

2
, l!.4.

~27!

The regular mean-field exponents are recovered forl!.4.
For the uncorrelated case we get

t5H 11
1

lout21
, 2,lout,3

3

2
, lout.3.

~28!

Now the regular mean-field results are obtained forl.3.
In summary, we calculate the percolation properties

directed scale-free networks. We find that the percolat
critical exponents in scale-free networks are strongly dep
dent upon the existence of correlations and upon the de
distribution exponents in the range of 2,l!,4. This regime
characterizes most naturally occurring networks, such
metabolic networks or the WWW. The regular mean-fie
behavior of percolation in infinite dimensions is recover
only for l!.4. A connection is found between nondirecte
and directed scale-free percolation exponents for any fi
correlation between the in and out degrees. In the unco
lated case, i.e.P( j ,k)5Pin( j )Pout(k), the probability to
reach an outgoing component does not bear any depend
uponPin( j ). The results are summarized in Table I.
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