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Cellular metabolism, the integrated interconversion of thou-
sands of metabolic substrates through enzyme-catalysed bio-
chemical reactions, is the most investigated complex
intracellular web of molecular interactions. Although the topo-
logical organization of individual reactions into metabolic net-
works is well understood1–4, the principles that govern their
global functional use under different growth conditions raise
many unanswered questions5–7. By implementing a flux balance
analysis8–12 of the metabolism of Escherichia coli strain MG1655,
here we show that network use is highly uneven. Whereas most
metabolic reactions have low fluxes, the overall activity of the
metabolism is dominated by several reactions with very high
fluxes. E. coli responds to changes in growth conditions by
reorganizing the rates of selected fluxes predominantly within
this high-flux backbone. This behaviour probably represents a
universal feature of metabolic activity in all cells, with potential
implications for metabolic engineering.

To identify the interplay between the underlying topology1–3 of
the metabolic network of E. coli K12 MG1655 and its functional
organization, we focus on the global features of potentially achiev-
able flux states in this model organism with a fully sequenced and
annotated genome13,14. In accordance with flux balance analysis
(FBA)8–12, we first identified the solution space (that is, all possible
flux states under a given condition) by using constraints imposed by
the conservation of mass and the stoichiometry of the reaction
system for the reconstructed E. coli metabolic network8–12. Assum-
ing that cellular metabolism is in a steady state and optimized for
the maximal growth rate, FBA allows us to calculate the flux for each
reaction using linear optimization8–11, which provides a measure of
the relative activity of each reaction.

As previously shown8–10, the steady state and optimality approxi-
mations offer experimentally verifiable predictions on the flux states
of the cell. Under any condition, however, there are also expected
differences, some stemming from the fact that there are transient
effects and that the growth rate is not always exactly optimal12. A
marked feature of the obtained flux distribution is its overall
inhomogeneity: reactions with fluxes spanning several orders of

magnitude coexist under the same conditions. For example, under
optimal growth conditions in a glutamate-rich culture, the dimen-
sionless flux of the succinyl coenzyme A synthetase reaction is 0.185,
whereas the flux of the aspartate oxidase reaction is four orders of
magnitude smaller, with a value of 2.2 £ 1025 in dimensionless
units (the flux vector is normalized to unity).

To characterize the coexistence of such widely different flux
values, we plot the flux distribution for active (non-zero flux)
reactions of E. coli grown in a glutamate- or succinate-rich substrate
(Fig. 1a). The distribution is best-fitted with a power law with a
small flux constant, indicating that the probability that a reaction
has flux n follows P(n) / (n þ n 0)2a, where the constant is
n0 ¼ 0.0003 and the flux exponent has the value a ¼ 1.5. The
observed power law is also consistent with published experimental
data. Indeed, the flux distribution obtained from the measured
fluxes of the central metabolism of E. coli15 is best-fitted with the
power-law form (Fig. 1d). As the central metabolism is character-
ized by high fluxes, the small-flux saturation seen in Fig. 1a is absent
from these data.

To examine whether the observed flux distribution is indepen-
dent of the environmental conditions, we mimicked the influence of
various growth conditions by randomly choosing 10%, 50% or 80%
of the 96 potential substrates that E. coli can consume (the input
substrates are listed in Supplementary Table S2). After optimizing
the growth rate, we find that the power-law distribution of meta-
bolic fluxes is independent of the external conditions (Fig. 1b). As
the metabolic activity of E. coli frequently deviates from the optimal
growth state under variable growth conditions10,12, we inspected
whether the wide flux distribution is also present in non-optimal

Figure 1 Characterizing the overall flux organization of the E. coli metabolic network.

a, Flux distribution for optimized biomass production on succinate (black) and glutamate

(red) substrates. Solid line corresponds to the power-law fit P(n) / (n þ n 0)2a, with

n 0 ¼ 0.0003 and a ¼ 1.5. b, Flux distribution for optimized biomass on succinate

(black) substrate with an additional 10% (red), 50% (green) and 80% (blue) randomly

chosen subsets of the 96 input channels turned on. The flux distribution was averaged

over 5,000 independent random choices of uptake metabolites. The resulting flux

distribution can be fitted (solid line) by a power law with parameters n 0 ¼ 0.0004 and

a ¼ 1.5. c, Flux distribution from the non-optimized hit-and-run sampling method16,17 of

the E. coli solution space. The solid line is the best fit, with n 0 ¼ 0.003 and a ¼ 2. Inset

shows the flux distribution in four randomly chosen sample points. d, The distribution of

experimentally determined fluxes (see ref. 15) from the central metabolism of E. coli

shows power-law behaviour, with a best fit to P(n) / n 2a with a ¼ 1.
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states. For this, we implemented a “hit-and-run” method16,17 that
randomly samples the full solution space, enabling us to calculate
the flux for each reaction in 50,000 distinct non-optimal states.

Although the obtained average flux distribution is consistent in
shape and flux ranges with those obtained by the optimal FBA, the
flux exponent is slightly larger (a ¼ 2, Fig. 1c), and the quality of
the scaling is slightly weaker. Notably, many individual non-optimal
states (Fig. 1c, inset) are consistent with an exponent a ¼ 1, in
accord with the experimental results (Fig. 1d) and supporting
the prediction10,12 that these organisms may not have achieved
optimality. These findings imply that the observed flux distribution
is a generic feature of flux conservation18 on a scale-free network19,
as it is independent of the optimal or non-optimal nature of the
growth rate or the growth conditions. The exponent, however, may
depend on the organism’s position in the solution space.

An exponentially decaying distribution (for example, a gaussian)
would predict that under a given condition most reactions are
characterized by comparable fluxes. By contrast, the identified
power-law flux distribution suggests a highly uneven use: most
reactions have small fluxes and coexist with a few reactions with very
high flux values. Hence, the biochemical activity of the metabolism
is dominated by several ‘hot’ reactions, which are embedded in a
network of mostly small-flux reactions. The fact that the observed
flux exponent a is less or equal to 2 implies that the first and higher
moments of the flux distribution are not defined from a math-
ematical perspective (they diverge for an infinite system). The
divergence of the average flux knl (first moment) indicates that no

flux value can be designated as characteristic for the system.
Although knl can be calculated numerically by averaging over the
flux of all reactions, with kn gl ¼ 0.0171 and kn sl ¼ 0.0173 for
glutamate and succinate uptakes, respectively, these values are
by no means indicative of the overall activity of the metabolic
reactions. Indeed, most reactions (86% for glutamate and 89% for
succinate uptake) have a smaller flux than this average, and a few
reactions have an activity that is orders of magnitude higher.

The observed flux distribution is compatible with two different
potential local flux structures. A homogeneous local organization
would imply that all reactions producing (consuming) a given
metabolite have comparable fluxes; however, a more delocalized
‘hot backbone’ is expected if the local flux organization is hetero-
geneous, such that each metabolite has a dominant source (con-
suming) reaction (Supplementary Fig. S7). To distinguish between
these two schemes for each metabolite i produced (consumed) by k
reactions, we define the measure20

Yðk; iÞ ¼
Xk

j¼1

n̂ijPk
l¼1n̂il

 !
ð1Þ

where n̂ ij is the mass carried by reaction j which produces (con-
sumes) metabolite i. If all reactions producing (consuming) metab-
olite i have comparable n̂ ij values, Y(k,i) scales as 1/k. If, however, the
activity of a single reaction dominates equation (1), we expect
Y(k,i) / 1, in other words, Y(k,i) is independent of k. For the E. coli
metabolism optimized for succinate and glutamate uptake, we find

Figure 2 Characterizing the local inhomogeneity of the metabolic flux distribution.

a, Measured kY(k) shown as a function of k for incoming and outgoing reactions,

averaged over all metabolites, indicates that Y(k) / k 20.27, as the solid line has the

slope g ¼ 0.73. Inset shows non-zero mass flows, n̂ij, producing (consuming) FAD on a

glutamate-rich substrate. b, Change in the flux of individual reactions when switching

from glutamate-rich (horizontal axis, ng) to succinate-rich (vertical axis, ns) conditions.

Reactions with negligible flux changes follow the diagonal (solid line). Some reactions are

turned off in only one of the conditions (shown close to the coordinate axes). Reactions

belonging to the HFB (see Fig. 3) are indicated by black squares, the rest are indicated by

blue dots. Reactions in which the direction of the flux is reversed are coloured green. c,

Absolute value of glutamate flux (ng) for 50% randomly chosen input channels (averaged

over 5,000 realizations) plotted against the standard deviation of the same reaction. The

red line, corresponding to y ¼ 0.075x, is shown for reference. Numbers 4a–4d

identify the reactions whose distribution is shown in Fig. 4. d, Relative flux change,

Dn ¼ (jns–ngj/ng), as a function of ng for the conditions shown in b. e, Relative

fluctuation, ji /n i, per reaction for the conditions shown in c, again emphasizing that large

changes are limited to high-flux reactions.

letters to nature

NATURE | VOL 427 | 26 FEBRUARY 2004 | www.nature.com/nature840 ©  2004 Nature  Publishing Group



that both the ‘in’ and ‘out’ degrees follow Y(k,i) / k20.27 (Fig. 2a),
representing an intermediate behaviour between the two extreme
cases. This indicates that the large-scale inhomogeneity observed in
the overall flux distribution is also increasingly valid at the level of
the individual metabolites: the more reactions that consume (pro-
duce) a given metabolite, the more likely it is that a single reaction
carries most of the flux.

Such inhomogeneity is obvious, for example, for flavin adenine
dinucleotide (FAD), whose production (consumption) is domi-
nated by only one of the two (three) contributing reactions (Fig. 2a,
inset), and the high-flux reactions are catalysed by succinate
dehydrogenase complex, EC 1.3.5.1 (succinate dehydrogenase, EC
1.3.99.1). We find that Y(k,i) scales in a similar fashion when E. coli
is grown in rich Luria-Bertani medium or non-optimized configur-
ations, indicating that the local inhomogeneity is not a unique
feature of the optimized state or a specific growth condition but
represents a generic property of the local flux distribution (see
Supplementary Information).

The local flux inhomogeneity indicates that for most metabolites
we can identify a single reaction that dominates its production
(consumption). This observation can be turned into a simple
algorithm, which for each metabolite systematically removes all
reactions but the one providing the largest incoming (outgoing)
flux contribution. The algorithm uncovers the ‘high-flux backbone’
(HFB) of the metabolism, a distinct structure of linked reactions
that forms a giant component21 with a star-like topology (Fig. 3 and
Supplementary Fig. S12), including most metabolites produced
under the given growth condition. Only a few pathways appear
disconnected, indicating that although these pathways are part of
the HFB, their end product is only the second-most important
source for another HFB metabolite. Of note, groups of individual
HFB reactions largely overlap with the traditional, biochemistry-
based partitioning of cellular metabolism: for example, all metabo-
lites of the citric acid cycle of E. coli are recovered, and so are a
considerable fraction of other important pathways, such as those
involved in histidine, murein and purine biosynthesis. The HFB

Figure 3 High-flux backbone for FBA-optimized metabolic network of E. coli on a

glutamate-rich substrate (see Supplementary Fig. S12b for succinate-rich substrate). For

any two metabolites (called for example, A and B) are connected with a directed link

pointing from A to B only if the reaction with maximal flux consuming A is the reaction with

maximal flux producing B. Shown are all metabolites that have at least one neighbour after

completing this procedure. The background colours denote different known biochemical

pathways. Metabolites (vertices) coloured blue have at least one neighbour in common in

glutamate- and succinate-rich substrates, and those coloured red have none. Reactions

(lines) are coloured blue if they are identical in glutamate- and succinate-rich substrates,

green if a different reaction connects the same neighbour pair, and red if this is a new

neighbour pair. Black dotted lines indicate where the disconnected pathways, for

example, folate biosynthesis (4), would connect to the cluster through a link that is not part

of the HFB. Thus, the red nodes and links highlight the predicted changes in the HFB when

shifting E. coli from glutamate- to succinate-rich media. Dashed lines indicate links to the

biomass growth reaction. Numbers identifying the various biochemical pathways are

listed in the Supplementary Information.
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captures the subset of reactions that dominate the activity of the
metabolism. As such, it offers a complementary approach to
elementary flux mode analyses22–24, which successfully capture the
available modes of operation for smaller metabolic subnetworks.

As the flux of the individual metabolic reactions depends on the
growth conditions, we need to inspect how sensitive the HFB is to
changes in the environment. Unexpectedly, Fig. 2b, c, which records
the relationship between the individual fluxes under succinate and
glutamate uptake, indicates that only the reactions in the high-flux
territory undergo noticeable flux changes, whereas the reactions in
the intermediate- and low-flux regions remain virtually unaltered (a
small shift can be observed, however, because there is a 41% increase
in biomass production in glutamate-rich versus succinate-rich
media). The observed flux changes correspond to two types of
event. First, some pathways are turned off completely (type I
reactions), having zero flux under one growth condition and high
flux in the other. These reactions are shown as symbols along the
horizontal and vertical axis in Fig. 2b. By contrast, other reactions
remain active but show an orders-of-magnitude shift in flux under
the two different growth conditions (type II reactions). Notably,
with two exceptions these marked type II changes are limited to the
HFB reactions. The same phenomenon is predicted when we inspect
the transition from glucose to succinate uptake, or for transitions
among various random uptake conditions (see Supplementary
Information).

To test the generality of this finding, we mimicked the effect of
various growth conditions by randomly choosing 50% of the
potential input substrates, measuring in each input configuration
the flux for each reaction. For each reaction, the average flux (n) and
the standard deviation (j) around this average were determined by
averaging over 5,000 random input conditions. For small fluxes, all
reactions closely follow a straight line (corresponding to j / n),
supporting the above finding that the small fluxes remain essentially
unaltered as the external conditions change (Fig. 2c). For the high-
flux reactions, however, there are noticeable deviations from this
line, indicating that there are considerable variations in flux from

one external condition to the other (Fig. 2d, e). A closer inspection
of the flux distribution shows that the reactions on the j / n curve
all have a clear unimodal flux distribution (Fig. 4a, c), indicating
that shifts in growth conditions lead to only small changes (within
j) of their flux values. By contrast, the reactions deviating from the
j / n curve have a bi- or trimodal distribution, indicating that
under different growth conditions they show several discrete and
distinct flux values (Fig. 4b, d).

Therefore, Figs 2c–e, 3 and 4 offer valuable insights into how
E. coli responds to changes in growth conditions: it activates or
deactivates specific metabolic reactions among the HFB metabolites
in new ways without altering the identity of the principal pathways
that participate in the backbone. For example, switching from a
glutamate to a succinate substrate turns off vitamin B6 biosynthesis
(type I change), reconnects in other ways several metabolic sub-
strates, such as those of the coenzyme A and NAD biosynthesis
pathways as well as the respiration pathways, and modifies the use of
the citric acid cycle (Supplementary Fig. S12). Apart from minor
changes, the use of the other pathways remains unaltered. These
reorganizations result in large, discrete changes in the fluxes of the
HFB reactions.

The power-law distribution of metabolic fluxes in the E. coli
metabolism indicates a highly uneven use of the underlying meta-
bolic network topology. Although wide flux differences among
various pathways are known from individual experiments15,25–27,
we find that they are part of a scale-invariant continuum, which
follows a scaling law. The uneven flux use is present both at the
global level (Fig. 1) and at the level of the individual metabolites
(Fig. 2a). This observation allows us to uncover automatically the
HFB of the metabolism and could provide insights into metabolic
organization and regulation as well as offering valuable inputs for
metabolic engineering.

The observation and theoretical prediction of a power-law load
distribution in simple models (ref. 18 and Supplementary Infor-
mation), coupled with the presence of a power law in both the
optimal and non-optimal flux states, suggests that the metabolic
flux organization is a direct consequence of the scale-free topology
of the network19. As all organisms examined so far are characterized
by a scale-free metabolic network topology1, the observed scaling in
the flux distribution is probably not limited to E. coli, but charac-
terizes all organisms from eukaryotes to archaea. As FBA is available
for an increasing number of prokaryotic and eukaryotic organisms,
this prediction could be verified both experimentally and theoreti-
cally in the near future. Hence, the observed uneven local and global
flux distribution seems to be rooted in the subtle, yet generic,
interplay of the network’s directed topology and flux balance,
channelling the numerous small fluxes into high-flux pathways.
The dependence of the scaling exponents characterizing the flux
distributions on the nature of the optimization process, as well as
the experimentally observed exponent, may be a benchmark for
future structural and evolutionary models aiming to explain the
origin, the organization and the modular structure3,4,28,29 of cellular
metabolism. A

Methods
Flux balance analysis
Starting from a stoichiometric matrix of the MG1655 strain8,9 of E. coli, containing 537
metabolites and 739 reactions, the steady-state concentrations of all the metabolites
satisfy:

d

dt
½Ai� ¼

j

X
Sijnj ¼ 0 ð2Þ

where Sij is the stoichiometric coefficient of metabolite Ai in reaction j and n j is the flux of
reaction j. We use the convention that if metabolite Ai is a substrate (product) in reaction j,
then S ij , 0 (Sij . 0), and we constrain all fluxes to be positive by dividing each reversible
reaction into two ‘forward’ reactions with positive fluxes. Any vector of positive fluxes {n j}
that satisfies equation (2) corresponds to a state of the metabolic network and, hence, a
potential state of operation of the cell. We restrict our study to the subspace of solutions for
which all components of n satisfy the constraint n j . 0 (ref. 8). We denote the mass carried

Figure 4 Effect of growth conditions on individual fluxes. Shown is the flux distribution for

four select E. coli reactions in a 50% random environment (see Fig. 2c). a, Triosphosphate

isomerase; b, carbon dioxide transport; c, NAD kinase; d, guanosine kinase. Reactions on

the j / n curve have gaussian distributions (a and c); reactions off this curve have

multimodal distributions (b and d), showing several discrete flux values under diverse

conditions. Solid curves correspond to gaussians derived using the calculated n and j

values of 20.15 and 0.012 (a) and 5.4e 26 and 3.9e 27 (c).

letters to nature

NATURE | VOL 427 | 26 FEBRUARY 2004 | www.nature.com/nature842 ©  2004 Nature  Publishing Group



by reaction j producing (consuming) metabolite i by:

n̂ij ¼ jSijjnj

Random uptake conditions
We choose randomly X% (where X ¼ 10, 50 or 80) of the 89 potential input substrates that
E. coli consumes in addition to the minimal uptake basis. For each of the transport
reactions, we set the uptake rate to 20 mmol per gram of dry weight per hour. As there are a
very large number of possible combinations of the selected input substrates, we repeat this
process 5,000 times and average over each realization.

The hit-and-run method
We select a set of basis vectors spanning the solution space using singular-value
decomposition. Because the reaction fluxes must be positive, the ‘bouncer’ is constrained
to the part of the solution space that intersects the positive orthant. We constrain the
bouncer within a hypersphere of radius Rmax and outside a hypersphere of radius
R min , R max, where we find that the sampling results are independent of the choices of
R min and R max. Starting from a random initial point inside the positive flux cone in a
randomly chosen direction, the bouncer travels deterministically a distance d between
sample points. Each sample point, corresponding to a solution vector where the
components are the individual fluxes, is normalized by projection onto the unit sphere.
After every bth bounce off the internal walls of the flux cone, the direction of the bouncer is
randomized.

High-flux backbone
For each metabolite we keep only the reactions with the largest flux that produces and
consumes the metabolite. Metabolites that are not produced (consumed) are discounted.
Subsequently, a directed link is introduced between two metabolites A and B if (1) A is a
substrate of the most active reaction producing B, and (2) B is a product of the maximal
reaction consuming A. We consider only metabolites that are connected to at least one
other metabolite after steps (1) and (2). For clarity, we remove Pi, PPi and ADP. Further
details and figures are provided in the Supplementary Information.

Received 29 August; accepted 12 December 2003; doi:10.1038/nature02289.

1. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of

metabolic networks. Nature 407, 651–654 (2000).

2. Wagner, A. & Fell, D. A. The small world inside large metabolic networks. Proc. R. Soc. Lond. B 268,

1803–1810 (2001).

3. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A.-L. Hierarchical organization of

modularity in metabolic networks. Science 297, 1551–1555 (2002).

4. Holme, P., Huss, M. & Jeong, H. Subnetwork hierarchies of biochemical pathways. Bioinformatics 19,

532–538 (2003).

5. Savageau, M. A. Biochemical Systems Analysis: a Study of Function and Design in Molecular Biology

(Addison-Wesley, Reading, MA, 1976).

6. Heinrich, R. & Schuster, S. The Regulation of Cellular Systems (Chapman & Hall, New York, 1996).

7. Goldbeter, A. Biochemical Oscillations and Cellular Rhythms: the Molecular Bases of Periodic and

Chaotic Behavior (Cambridge Univ. Press, Cambridge, UK, 1996).

8. Edwards, J. S. & Palsson, B. O. The Escherichia coli MG1655 in silico metabolic genotype: its definition,

characteristics, and capabilities. Proc. Natl Acad. Sci. USA 97, 5528–5533 (2000).

9. Edwards, J. S., Ibarra, R. U. & Palsson, B. O. In silico predictions of Escherichia coli metabolic

capabilities are consistent with experimental data. Nature Biotechnol. 19, 125–130 (2001).

10. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to

achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

11. Edwards, J. S., Ramakrishna, R. & Palsson, B. O. Characterizing the metabolic phenotype: a phenotype

phase plane analysis. Biotechnol. Bioeng. 77, 27–36 (2002).

12. Segre, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic

networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

13. Blattner, F. R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474

(1997).

14. Gerdes, S. Y. et al. Experimental determination and system level analysis of essential genes in

Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684 (2003).

15. Emmerling, M. et al. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli.

J. Bacteriol. 184, 152–164 (2002).

16. Smith, R. L. Efficient Monte-Carlo procedures for generating points uniformly distributed over

bounded regions. Oper. Res. 32, 1296–1308 (1984).

17. Lovász, L. Hit-and-run mixes fast. Math. Program. 86, 443–461 (1999).

18. Goh, K. I., Kahng, B. & Kim, D. Universal behavior of load distribution in scale-free networks. Phys.

Rev. Lett. 87, 278701 (2001).

19. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

20. Barthelemy, M., Gondran, B. & Guichard, E. Spatial structure of the Internet traffic. Physica A 319,

633–642 (2003).

21. Ma, H. W. & Zeng, A. P. The connectivity structure, giant strong component and centrality of

metabolic networks. Bioinformatics 19, 1423–1430 (2003).

22. Dandekar, T., Schuster, S., Snel, B., Huynen, M. & Bork, P. Pathway alignment: application to the

comparative analysis of glycolytic enzymes. Biochem. J. 343, 115–124 (1999).

23. Schuster, S., Fell, D. A. & Dandekar, T. A general definition of metabolic pathways useful for systematic

organization and analysis of complex metabolic networks. Nature Biotechnol. 18, 326–332 (2000).

24. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E. D. Metabolic network structure

determines key aspects of functionality and regulation. Nature 420, 190–193 (2002).

25. Sauer, U. et al. Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia

coli central carbon metabolism. J. Bacteriol. 181, 6679–6688 (1999).

26. Canonaco, F. et al. Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli

and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol. Lett. 204,

247–252 (2001).

27. Fischer, E. & Sauer, U. Metabolic flux profiling of Escherichia coli mutants in central carbon

metabolism using GC-MS. Eur. J. Biochem. 270, 880–891 (2003).

28. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology.

Nature 402, C47–C52 (1999).

29. Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. Microbiol. 6, 125–134

(2003).

Supplementary Information accompanies the paper on www.nature.com/nature.

Acknowledgements We thank M. Bárász, J. Becker, E. Ravasz, A. Vazquez and S. Wuchty for

discussions; and B. Palsson and S. Schuster for comments on the manuscript. Research at Eötvös
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Sortilin1 (,95 kDa) is a member of the recently discovered family
of Vps10p-domain receptors2,3, and is expressed in a variety of
tissues, notably brain, spinal cord and muscle. It acts as a receptor
for neurotensin4,5, but predominates in regions of the nervous
system that neither synthesize nor respond to this neuropeptide6,
suggesting that sortilin has additional roles. Sortilin is expressed
during embryogenesis7 in areas where nerve growth factor (NGF)
and its precursor, proNGF, have well-characterized effects6,7.
These neurotrophins can be released by neuronal tissues8,9, and
they regulate neuronal development through cell survival and
cell death signalling. NGF regulates cell survival and cell death
via binding to two different receptors, TrkA and p75NTR (ref. 10).
In contrast, proNGF selectively induces apoptosis through
p75NTR but not TrkA11. However, not all p75NTR-expressing
cells respond to proNGF, suggesting that additional membrane
proteins are required for the induction of cell death. Here we
report that proNGF creates a signalling complex by simul-
taneously binding to p75NTR and sortilin. Thus sortilin acts as
a co-receptor and molecular switch governing the p75NTR-
mediated pro-apoptotic signal induced by proNGF.

Binding of NGF was examined by surface-plasmon resonance
(SPR). As demonstrated in Fig. 1a, sortilin bound mature NGF with
moderate affinity (dissociation constant (K d),90 nM). In contrast,
the affinity of NGF for p75NTR and TrkA was high (K d 1–2 nM), in
accordance with previous studies in cells11–13. As the NGF precursor
(proNGF) may escape intracellular processing and be released
extracellularly, we next examined binding of proNGF9,11,14,15.
Whereas lack of processing reduces the affinity of proNGF for
p75NTR and TrkA (K d ,15–20 nM), it results in a much higher
affinity (K d ,5 nM) for sortilin (Fig. 1a). This is surprising because
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