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Diet plays a defining role in human health. Indeed, while 
poor diet can substantially increase the risk for coronary 
heart disease and type 2 diabetes mellitus (T2D), a healthy 

diet can play a protective role, even mitigating genetic risk for 
coronary heart disease1. Polyphenols are a class of compounds 
present in plant-based foods, including fruits, vegetables, nuts, 
seeds, beans (for example coffee and cocoa), herbs, spices, tea and 
wine, that play a well-documented protective role as antioxidants, 
which affect several diseases, from cancer to T2D, cardiovascular 
and neurodegenerative diseases2,3. Previous efforts have profiled 
over 500 polyphenols in more than 400 foods4,5 and have docu-
mented the high diversity of polyphenols to which humans are 
exposed through their diet, ranging from flavonoids to phenolic 
acids, lignans and stilbenes.

The underlying molecular mechanisms through which specific 
polyphenols exert their beneficial effects on human health remain 
largely unexplored. From a mechanistic perspective, dietary poly-
phenols are not engaged in endogenous metabolic processes of 
anabolism and catabolism, but rather affect human health through 
their anti- or pro-oxidant activity6 by binding to proteins and modu-
lating their activity7,8, interacting with digestive enzymes9 and mod-
ulating gut microbiota growth10,11. Yet the variety of experimental 
settings and the limited scope of studies that explore the molecular 
effects of polyphenols have, to date, offered a range of often conflict-
ing evidence. For example, two clinical trials, both limited in terms 
of the number of subjects and the intervention periods, resulted in 

conflicting conclusions about the beneficial effects of resveratrol on 
glycemic control in T2D patients12,13. We therefore need a frame-
work to interpret the evidence present in the literature and to offer 
in-depth mechanistic predictions of the molecular pathways respon-
sible for the health implications of polyphenols present in the diet. 
Ultimately, these insights could help us provide evidence on causal 
diet–health associations as well as guidelines of food consumption 
for different individuals and help to develop novel diagnostic and 
therapeutic strategies that could lead to the synthesis of novel drugs.

Here, we address this challenge by developing a network medi-
cine framework to capture the molecular interactions between 
polyphenols and their cellular binding targets, unveiling their rela-
tionship to complex diseases. The developed framework is based on 
the human interactome, a comprehensive subcellular network con-
sisting of all known physical interactions between human proteins 
that has been validated previously as a platform for understand-
ing disease mechanisms14,15, rational drug target identification and 
drug repurposing16,17.

We find that the proteins to which polyphenols bind form identifi-
able neighbourhoods in the human interactome, allowing us to dem-
onstrate that the proximity between polyphenol targets and proteins 
associated with specific diseases is predictive of the known therapeu-
tic effects of polyphenols. Finally, we unveil the potential therapeutic 
effects of rosmarinic acid (RA) on vascular diseases (VD), predict-
ing that its mechanism of action is related to modulation of platelet 
function. We confirm this prediction by experiments that indicate 
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that RA modulates platelet function in vitro by inhibiting tyrosine 
protein phosphorylation. Altogether, our results demonstrate that 
the network-based relationship between disease proteins and poly-
phenol targets offers a tool to systematically unveil the health effects 
of polyphenols.

Results
Polyphenol targets cluster in specific functional neighbour-
hoods of the interactome. We mapped the targets of 65 polyphe-
nols (Methods) to the human interactome, consisting of 17,651 
proteins and 351,393 interactions (Fig. 1a,b). We find that 19 of 
the 65 polyphenols have only one protein target, while a few poly-
phenols have an exceptionally large number of targets (Fig. 1c). 
We computed the Jaccard index (JI) of the protein targets of each 
polyphenol pair, finding only a limited similarity of targets among 
different polyphenols (average JI = 0.0206) (Supplementary Fig. 1a). 
Even though the average JI is small, it is still significantly higher 
(Z = 147, Supplementary Fig. 1b) than the JI expected if the poly-
phenol targets were randomly assigned from the pool of all network  
proteins with degrees matching the original set. This finding sug-
gests that while each polyphenol targets a specific set of proteins, 
their targets are confined to a common pool of proteins, likely deter-
mined by commonalities in the polyphenol-binding domains of the 
three-dimensional structure of the protein targets18. Gene ontology 
enrichment analysis recovers existing mechanisms8 and also helps 
identify new processes related to polyphenol protein targets, such 
as post-translational protein modifications, regulation and xenobi-
otic metabolism (Fig. 1d). The enriched gene ontology categories 
indicate that polyphenols modulate common regulatory processes, 
but the low similarity in their protein targets, illustrated by the low 
average JI, indicates that they target different processes within the 
same process.

We next asked whether the polyphenol targets cluster in specific 
regions of the human interactome. We focused on polyphenols with 
more than two targets (n = 46, Fig. 2) and measured the size and sig-
nificance of the largest connected component (LCC) formed by the 
targets of each polyphenol. We found that 25 of the 46 polyphenols 
have a larger LCC than expected by chance (Z-score > 1.95) (Fig. 1e 
and Fig. 2). In agreement with experimental evidence document-
ing the effect of polyphenols on multiple pathways19, we find that 
ten polyphenols have their targets organized in multiple connected 
components of size > 2.

These results indicate that the targets of polyphenols modulate 
specific well-localized neighbourhoods of the interactome (Fig. 2 
and Supplementary Fig. 1c). This prompted us to explore whether 
the interactome regions targeted by the polyphenols reside within 
network neighbourhoods associated with specific diseases, thereby 
seeking a network-based framework to unveil the molecular mecha-
nisms through which specific polyphenols modulate health.

Proximity between polyphenol targets and disease proteins 
reveals their therapeutic effects. Polyphenols can be viewed as 
drugs in that they bind to specific proteins, affecting their ability 
to perform their normal functions. We therefore hypothesized that 
we can apply the network-based framework used to predict the 
efficacy of drugs in specific diseases16,17 to also predict the thera-
peutic effects of polyphenols. The closer the targets of a polyphe-
nol are to disease proteins, the more likely that the polyphenol 
will affect the disease phenotype. We therefore calculated the net-
work proximity between polyphenol targets and proteins associ-
ated with 299 diseases using the closest measure, dc, representing 
the average shortest path length between each polyphenol target 
and the nearest disease protein (Methods). Consider, for example, 
(−)-epigallocatechin-3-O-gallate (EGCG), a polyphenol abundant 
in green tea. Epidemiological studies have found a positive relation-
ship between green tea consumption and reduced risk of T2D20,21, 

and physiological and biochemical studies have shown that EGCG 
presents glucose-lowering effects in both in vitro and in vivo mod-
els22,23. We identified 54 experimentally validated EGCG protein 
targets and mapped them to the interactome, finding that the 
EGCG targets form an LCC of 17 proteins (Z-score = 7.61) (Fig. 3a). 
We also computed the network-based distance between EGCG tar-
gets and 83 proteins associated with T2D, finding that the two sets 
are significantly proximal to each other. We ranked all 299 diseases 
based on their network proximity to the EGCG targets to deter-
mine whether we could recover the 82 diseases in which EGCG has 
known therapeutic effects according to the comparative toxicoge-
nomics database (CTD)24. By this analysis, we were able to recover 
15 previously known therapeutic associations among the top 20 
ranked diseases (Table 1), confirming that network proximity can 
discriminate between known and unknown disease associations for 
polyphenols, as previously confirmed for drugs16,17.

We expanded these methods to all polyphenol–disease pairs to 
predict diseases for which specific polyphenols might have thera-
peutic effects. For this analysis, we grouped all 19,435 polyphenol–
disease associations between 65 polyphenols and 299 diseases into 
known (1,525) and unknown (17,910) associations. The known 
polyphenol–disease set was retrieved from the CTD, which is limited 
to manually curated associations for which there is literature-based 
evidence. For each polyphenol, we tested how well network prox-
imity discriminates between the known and unknown sets by eval-
uating the area under the curve (AUC) of the receiving operating 
characteristic curve. For EGCG, network proximity offers good 
discriminative power (AUC = 0.78, CI = 0.70–0.86) between dis-
eases with known and unknown therapeutic associations (Table 1).  
We find that network proximity (dc) offers predictive power with 
an AUC > 0.7 for 31 polyphenols (Fig. 3b). The methodology 
recovers many associations well-documented in the literature, 
such as the beneficial effects of umbelliferone on colorectal neo-
plasms25,26. In Table 2, we summarize the top 10 polyphenols for 
which the network medicine framework offers the best predictive 
power of therapeutic effects, limiting the entries to those with pre-
dictive performance of AUC > 0.6 and where the precision of the 
performance of the top predictions is greater than 0.6. Given the 
lack of data on true negative examples, we considered unknown 
associations as negative cases, observing the same trend when 
we used an alternative performance metric that does not require 
true negative labels (that is, AUC of the Precision–Recall curve) 
(Supplementary Fig. 2).

Finally, we performed multiple robustness checks to exclude the 
role of potential biases in the input data. To test whether the predic-
tions are biased by the set of known associations retrieved from the 
CTD, we randomly selected 100 papers from PubMed containing 
medical subject headings (MeSH) terms that tag EGCG to diseases. 
We manually curated the evidence for EGCG’s therapeutic effects 
for the diseases discussed in the published papers, excluding reviews 
and non-English language publications. The dataset was processed 
to include implicit associations (Methods), resulting in a total of 
113 diseases associated with EGCG, of which 58 overlap with the 
associations reported by the CTD (Fig. 3c). We observed that the 
predictive power of network proximity was unaffected by whether 
we considered the annotations from the CTD, the manually curated 
list or the union of both (Fig. 3d). To test the role of potential biases 
in the interactome, we repeated our analysis using only high-quality 
polyphenol–protein interactions retrieved from ligand–protein 
three-dimensional resolved structures (Supplementary Fig. 1d)  
and a subset of the interactome derived from an unbiased 
high-throughput screening (Supplementary Fig. 1f). We found 
that the predictive power was largely unchanged, indicating that 
the literature bias in the interactome does not affect our findings. 
Finally, we retested the predictive performance by considering not 
only the therapeutic polyphenol–disease associations, but also the 
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Fig. 1 | Properties of polyphenol protein targets. a, Schematic representation of the human interactome, highlighting regions where polyphenol targets 
and disease proteins are localized. b, Diagram showing the selection criteria for the polyphenols evaluated in this study. c, Distribution of the number of 
polyphenol protein targets mapped to the human interactome. d, Top (n = 15) enriched gene ontology terms (Biological Process) among all polyphenol 
protein targets. The x axis shows the proportion of targets mapped to each pathway. e, Size of the LCC formed by the targets of each polyphenol in the 
interactome and the corresponding significance (Z-score).
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marker/mechanism ones (another type of curated association avail-
able in the CTD) finding that the predictive power remains largely 
unchanged (Supplementary Notes and Supplementary Fig. 3).

Network proximity predicts gene expression perturbation 
induced by polyphenols. To validate that network proximity reflects 
the biological activity of polyphenols observed in experimental  

AKR1B15

AKR1B10

AKR1C4

AKR1B1

AKR1C2

AKR1D1

AKR1C3

AKR1C1

AKR1B15

AKR1B10

AKR1C3

AKR1C1
AKR1D1

AKR1C4

AKR1C2

AKR1C4

AKR1C1

AKR1B15

AKR1C3

AKR1B10

AKR1D1

AKR1C2

COQ6

HPGD

DECR2

APP

DECR1

DHRSX

DHRS7B

ZFP36

MMP14

BACE1

MMP2

BCL2

ALPG

PIK3CG

PTGS1

ALOX5

MAPK1

CYP1A1

PYGL

PYGB

PYGM

UGT1A10

UGT1A6

UGT1A9

PRKDC

ATR

MTOR

MAPK14

ALPI

PIK3CD

PTGS2

HSD3B1

HSD3B2

TOP2A

UGT1A4

UGT1A1

UGT1A7

UGT1A8

UGT1A3

ALPI

EGFR

ALPP

GCLM

ALPP

ALPG

CAMK1D

SIK2

LRRK2 CSNK1A1

STK3

SYK
BTKATP5F1B

ATP5F1A
ATP5F1C

LCK

TBK1

SIRT3

HCK
FLT1

FGFR1

JAK2

GRK5
MAP4K4

ALK

TNK2

RET LTK

AKR1B1

ABCC1

AR

ESR1

ESR2

CSNK2A1

GSK3B

CDK6

MAPT
BCL2

MAPK14

DYRK1A

ZFP36L1

PIN1

ESRRB

EGFR

ESR1

ABL1

KARS1
ESRRAESR2

AKR1B1

MYH13

ALOX12B

HSD17B8

CA2

CBR4

ALOXE3

CA9

MYH8

CBR4

CBR1

CYP1A1

HSD17B1

ACOT2

GOT1L1

HSD17B8

NSDHL

KLK3

F10

PLG
F12

TMPRSS11D

KLKB1

F7

F9

PLAT HPN

F2

PROC

F11 HGFAC

MST1

ST14

HGFPLAU

NUF2

RAN

XPO6

XPO5

XPO1

SNUPNPRKACA

NDC80

CELA1

LPA MASP1

MASP2

ELANE C2

GZMB

PROZ

C1S

CTRB1 CFD

CFBCTRB2
C1RL

PRSS46P

PRSS50
HP

ACOT1

ALOX5

CBR3

GOT1

UGT2A3

HSD17B8

CBR4
AKR1B15

AKR1B10

AKR1C1

AKR1D1

AKR1B1

AKR1C3AKR1C2

AKR1C4

CSNK2A1

CSNK2A2

UGT2B15

HSD3B7

FGFR3

CYP1A2

NSDHL
CAMK2B

EPHA10

STYK1

PIM2

ALOX5

MMP2

FLT4

MMP9

SMG1

UGT2B15 TEK

UGT1A8
UGT1A1

UGT1A6

UGT2A3 TIE1

UGT1A7 UGT1A4

UGT1A10

UGT1A3

UGT1A9

ALOXE3CYP19A1

ALOX12B
CYP1A1

MAP3K21

INSRR

PYGB

LIMK2

SRC

MOS

EPHB6

MAP3K10

FGFR1EPHA4

JAK2 DRD4

PYGL

MATKCSK

FRK

FGR

KDRPBK

UXS1

PRKDC

MAP3K11

STK11

GPR35

EPHA2

MTOR

GSK3A

NT5E

ATR

PTK2

MLKL

ABL1

AKT1
CSF1R

RIPK3

HCK

FLT1

STK17B

TRIB3

ALOX12

STK40

EPHA1

MELK

TRIB2

TRIB1

GSK3B

PASK

EPHA7

RET EPHB2

FGFR4

UGT2B7

YES1

PKN1

F2

MAP3K20

SRMS

ABCG2

PLAU
EPHB3

RIPK2

IRAK3

ATP5F1A

GCLM

ERN1

PIM1

MAP3K7

PTK6

PIK3C2B

JAK3

KDM1A

FYN

ROR1

PIK3CG

TEC

PI4KA

JAK1

PIK3CA

EPHA8

EPHB4

IGF1R
SYK

FLT3

TYK2

PIK3CD

LIMK1

EPHB1

CDC42BPB

AXL

KIT

PDGFRA FGFR2LYN

PDGFRB PYGM

TYRO3
ABL2

INSR

BMX

IRAK1IRAK4

ZAP70
PLK1

BTK
RIPK1

ADORA2A

EGFR

ATP5F1C

LCK

PIK3C2A
IRAK2

NUAK1

AURKB

PIK3C3

ATP5F1B

PIK3CB
CALM1

BLK

TXKCDK1 EPHA3

ITK

MET

AKR1B15

AKR1D1

AKR1C1
AKR1B10

AKR1B1

AKR1C2

AKR1C4

AKR1C3

HSD3B2MAOB

HSD3B1
MAOA

Quercetin

(–)-Epicatechin-3-O-gallate

(–)-Epigallocatechin-3-O-gallate Myricetin

3-Phenylpropionic acid

Butein Phenol

Quercetin 3-o-glucoside

Piceatannol

RCOR1

RSPO1

RSPO3

RSPO4

KDM1A

Cinnamic acid

Isoliquiritigenin

Apigenin Chrysin

3-Caffeoylquinic acid Genistein

Luteolin

(–)-Epicatechin

Caffeic acid

GCLMAKR1B10

EPHB4
BRAF HSPA1B

AKR1B15

NUAK1

CSNK2A1

AKR1B1

PDGFRB

EGFR

SYK

AKT1

METFLT4

DUSP3

SRC
SMAD3

KDR

INSR

IGF1R

CA3

AKR1C3

AKR1C4

AKR1D1

AKR1C1

AKR1C2

Ellagic acid

MYH9

ATP5F1A

MYO6

MYH14

MYO1C

ATP5F1B

IQCB1

LTA4H

SIRT1

ATP5F1C

PIK3CA

AHR

ESR1

AHRR

PPARG

MYO5B

MYO5A

MYO1E

MYO5C MYO19

MYO1B

MYH11

MYO18A

MYH10

MYO10

PTGS1

PTGS2
CYP2C19

CYP2C9

Resveratrol

Kaempeferol
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data, we retrieved expression perturbation signatures from the 
Connectivity Map database27 for the treatment of the breast cancer 
MCF7 cell line with 21 polyphenols (Supplementary Table 1 and 
Supplementary Fig. 4). We investigated the relationships between 
the extent to which polyphenols perturb the expression of disease 
genes, the network proximity between the polyphenol targets and 
disease proteins and their known therapeutic effects (Fig. 4a). For 
example, we observe different perturbation profiles for gene pools 
associated with different diseases: for treatment with genistein 
(1 µM, 6 hours) we observed 10 skin disease genes with perturbation 
scores greater than 2, while we observed only one highly perturbed 
cerebrovascular disorder gene (Fig. 4b). Indeed, network proxim-
ity indicates that skin disease is closer to the genistein targets than 
cerebrovascular disorder, suggesting a relationship between net-
work proximity, gene expression perturbation and the therapeutic 
effects of the polyphenol (Fig. 4a). To test this hypothesis, we com-
puted an enrichment score that measures the over-representation 

of disease genes among the most perturbed genes (Methods), find-
ing 13 diseases that have their genes significantly enriched among 
the genes most deregulated by genistein, of which four have known 
therapeutic associations. We find that these four diseases are sig-
nificantly closer to the genistein targets than the nine diseases with 
unknown therapeutic associations (Fig. 4c). We observed a similar 
trend for treatments with other polyphenols, whether we use the 
same concentration (1 µM, Fig. 4c) or different ones (100 nM to 
10 µM, Supplementary Fig. 5). This result suggests that changes in 
gene expression caused by a polyphenol are indicative of its thera-
peutic effects, but only if the observed expression change is limited 
to proteins proximal to the polyphenol targets (Fig. 4a).

Consequently, network proximity should also be predictive 
of the overall gene expression perturbation caused by a polyphe-
nol on the genes of a given disease. To test this hypothesis, in each 
experimental combination defined by the polyphenol type and its 
concentration, we evaluated the maximum perturbation among 
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genes for each disease. We then compared the magnitude of the 
observed perturbation between diseases that were proximal (dc 
below the 25th percentile, Zdc < −0.5) or distal (dc above the 75th 
percentile, Zdc > −0.5) to the polyphenol targets. Figure 5a,b and 
Supplementary Fig. 6 show the results for the genistein treatment 
(1 µM, 6 hours), which indicate that diseases proximal to the poly-
phenol targets show higher maximum perturbation values than dis-
tal diseases. The same trend is observed for other polyphenols when 
we use different dc and Zdc thresholds for defining proximal and 
distant diseases (Fig. 5b and Supplementary Figs. 6–9), confirm-
ing that the impact of a polyphenol on cellular signalling pathways 
is localized in the network space, being greater in the vicinity of 
the polyphenol targets than in neighbourhoods remote from these 
targets. We also considered gene expression perturbations in the 
network vicinity of the polyphenol targets, regardless of whether 
the proteins were disease proteins, and observed higher perturba-
tion scores for proximal proteins in 12 out 21 polyphenols tested at 
10 µM (Supplementary Fig. 10). Finally, we found that the enrich-
ment score of perturbed genes among disease genes was not as pre-
dictive of the polyphenol therapeutic effects as network proximity 
(Supplementary Fig. 11).

Altogether, these results indicate that network proximity offers 
a mechanistic interpretation for the gene expression perturbations 
induced by polyphenols on disease genes. They also show that net-
work proximity can indicate when gene expression perturbations 

result in therapeutic effects, suggesting that future studies could 
integrate gene expression (whenever available) with network 
proximity as they aim to more accurately prioritize polyphenol–
disease associations.

Experimental evidence confirms that RA modulates platelet 
function. To demonstrate how the network-based framework can 
facilitate the mechanistic interpretation of the therapeutic effects 
of selected polyphenols, we next focus on VD. Of 65 polyphe-
nols evaluated in this study, we found 27 to have associations to 
VD, as their targets were within the VD network neighbourhood 
(Supplementary Table 3). We therefore inspected the targets of 15 of 
the 27 polyphenols with 10 or fewer targets. The network analysis 
identified direct links between biological processes related to vascu-
lar health and the targets of three polyphenols: gallic acid, RA and 
1,4-naphthoquinone (Supplementary Fig. 12 and Supplementary 
Notes). The network neighbourhood containing the targets of these 
polyphenols suggests that gallic acid activity involves thrombus dis-
solution processes, RA acts on platelet activation and antioxidant 
pathways through FYN and its neighbours and 1,4-naphthoquinone 
acts on signalling pathways of vascular cells through MAP2K1 
activity (Supplementary Fig. 12 and Supplementary Notes).

To validate the developed framework, we set out to obtain direct 
experimental evidence of the predicted mechanistic role of RA in 
VD. The RA targets are in close proximity to proteins related to 
platelet function, forming the RA/VD-platelet module: a connected 
component formed by the RA target FYN and the VD proteins asso-
ciated with platelet function PDE4D, CD36 and APP (Fig. 6a). We 
therefore asked whether RA influenced platelet activation in vitro. 
As platelets can be stimulated through different activation pathways, 
RA effects can, in principle, occur in any of them. To test these dif-
ferent possibilities, we pretreated platelets with RA and then either 
(1) activated glycoprotein VI by collagen or collagen-related pep-
tide (CRP/CRPXL); (2) activated protease-activated receptors-1,4 
by thrombin receptor activator peptide-6 (TRAP-6); (3) activated 
prostanoid thromboxane receptor by the thromboxane A2 analogue 
(U46619) or (4) activated P2Y1/12 receptor by adenosine diphos-
phate (ADP)28. When we compared the network distance between 
each stimulant receptor and the RA/VD-platelet module (Fig. 6a), we 
observed that the receptors for CRP/CRPXL, TRAP-6 and U46619 
are closer than would be expected for a random distribution, while 
the receptor for ADP is more distant (Fig. 6b). We expected that 
platelets would be most affected by RA when treated with stimu-
lants whose receptors are most proximal to the RA/VD-platelet 
module, that is, CRP/CRPXL, TRAP-6 and U46619, and as a con-
trol, we expect no effect for the distant ADP receptor. The experi-
ments confirm this prediction: RA inhibits collagen-mediated 
platelet aggregation (Fig. 6c) and impairs dense granule secretion 
induced by CRPXL, TRAP-6 and U46619 (Supplementary Fig. 13). 
RA-treated platelets also displayed dampened α-granule secretion 
(Fig. 6d) and integrin αIIbβ3 activation (Supplementary Fig. 13) in 
response to U46619. As expected, RA did not affect platelet func-
tion when we used an agonist whose receptor is distant from the 
RA/VD-platelet module (that is, ADP). These findings suggest that 
RA impairs basic hallmarks of platelet activation via strong network 
effects, supporting our hypothesis that the proximity between RA 
targets and the neighbourhood associated with platelet function 
(Fig. 6a) could in part explain RA’s impact on VD.

We next sought to clarify the molecular mechanisms involved in 
the impact of RA on platelets. Given that platelet activation is coor-
dinated by several kinases, we hypothesized that RA inhibits platelet 
function by blocking agonist-induced protein tyrosine phosphor-
ylation. We observed that RA-treated platelets demonstrated a 
dose-dependent reduction in total tyrosine phosphorylation in 
response to CRPXL, TRAP-6 and U46619 (Fig. 6e). Given that RA 
caused a substantial decrease in phosphorylation of proteins with 

Table 1 | top 20 predicted therapeutic associations between 
EGCG and human diseases

Disease Distance 
dc

Significance 
Zdc

Known 
therapeutic 
effect 
(references)

Nervous system diseases 1.13 −1.72 64,65

Nutritional and metabolic 
diseases

1.25 −1.45 23

Metabolic diseases 1.25 −1.41 23

Cardiovascular diseases 1.27 −2.67 66–71

Immune system diseases 1.29 −1.31 72

Vascular diseases 1.33 −3.47 66,67,70

Digestive system diseases 1.33 −1.57 73–77

Neurodegenerative diseases 1.37 −1.71 78

Central nervous system 
diseases

1.41 −0.54 78

Autoimmune diseases 1.41 −1.30 72

Gastrointestinal diseases 1.43 −1.02 79

Brain diseases 1.43 −0.89 NA

Intestinal diseases 1.49 −1.08 79

Inflammatory bowel diseases 1.54 −2.10 NA

Bone diseases 1.54 −1.18 NA

Gastroenteritis 1.54 −1.92 NA

Demyelinating diseases 1.54 −1.78 NA

Glucose metabolism 
disorders

1.54 −1.58 23

Heart diseases 1.56 −1.20 68,69,71

Diabetes mellitus 1.56 −1.66 23

Diseases were ordered according to the network distance (dc) of their proteins to EGCG targets, 
and diseases with relative distance Zdc > −0.5 were removed. references reported in the CTD 
for curated therapeutic associations are shown. NA indicates diseases with no documented 
therapeutic association in CTD.
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atomic mass between 50 and 60 kDa (Fig. 6e), we hypothesized that 
RA may reduce phosphorylation of FYN (59 kDa) or other similarly 
sized members of the same protein family (that is, SFKs). To test 
this, we measured the level of phosphorylation within the activa-
tion domain (amino acid 416) of SFKs, finding that RA reduced 
collagen induced phosphorylation of FYN as well as basal tyrosine 
phosphorylation of SFKs (Fig. 6f). This indicates that RA perturbs 
the phospho-signalling networks that regulate platelet response to 
extracellular stimuli.

Taken together, these findings support our prediction that RA 
modulates platelet activation and function. They also support the 
observation that its mechanism of action involves reduction of 
phosphorylation at the activation domain of the protein tyrosine 
kinase FYN (Fig. 6a) and the inhibition of general tyrosine phos-
phorylation. Finally, while polyphenols are usually associated with 
their antioxidant function, here we illustrate another mechanistic 
pathway through which they could benefit health.

Discussion
Here, we propose a network-based framework to predict the thera-
peutic effects of dietary polyphenols in human diseases. We find 
that polyphenol protein targets cluster in specific functional neigh-
bourhoods of the interactome, and we show that the network prox-
imity between polyphenol targets and disease proteins is predictive 
of the therapeutic effects of polyphenols. We demonstrate that dis-
eases whose proteins are proximal to polyphenol targets tend to have 
significant changes in gene expression in cell lines treated with the 
respective polyphenol, while such changes are absent for diseases 
whose proteins are distal to polyphenol targets. Finally, we find that 
the network neighbourhood around the RA targets and VD pro-
teins are related to platelet function. We validate this mechanistic 
prediction by showing that RA modulates platelet function through 
inhibition of protein tyrosine phosphorylation. These observations 
suggest a role of RA on prevention of VD by inhibiting platelet acti-
vation and aggregation.

The observed results also suggest multiple avenues through 
which our ability to understand the role of polyphenols could be 
improved. First, some of the known health benefits of polyphenols 
might be caused not only by the native molecules but also by their 
metabolic byproducts29,30. However, we lack data concerning colonic 
degradation, liver metabolism, bioavailability and interaction with 
proteins of specific polyphenols or their metabolic byproducts. 
Future experimental data on protein interactions with polyphenol 
byproducts and conjugates could be incorporated in the proposed 
framework, further improving the accuracy of our predictions. 

The lack of these data does not invalidate the findings presented 
here, since previous studies report the presence of unmetabolized 
polyphenols in blood31–33 and it has been hypothesized that, in 
some instances, deconjugation of liver metabolites occurs in spe-
cific tissues or cells34–36. Therefore, the lack of data concerning spe-
cific polyphenols and the fact that other mechanisms exist through 
which they can affect health (for example, antioxidant activity and 
microbiota regulation) explain why this methodology might still 
miss a few known relationships between polyphenols and diseases. 
Second, considering that several experimental studies of polyphe-
nol bioefficacy have been observed in in vitro and in vivo models, 
the proposed framework might help us interpret literature evidence, 
possibly even allowing us to exclude chemical candidates when con-
sidering the health benefits provided by a given food in epidemio-
logical association studies.

Our assumption that network proximity recovers thera-
peutic associations is based on its predictive performance on a 
ground-truth dataset for observed therapeutic effects and also relies 
on previous observations about the effect of drugs on diseases16,17,37. 
While the proposed methodology offers a powerful prioritization 
tool to guide future research, the real effect of polyphenols on dis-
eases might still be negative, given other unmet factors such as dos-
age, comorbidities and drug interactions, which can only be ruled 
out by preclinical and clinical studies. Gene expression perturba-
tion profiles, such as the ones provided by the Connectivity Map, 
can also be integrated with network proximity to further highlight 
potential beneficial or harmful effects of chemical compounds38,39.

The low bioavailability of some polyphenols in food might still 
present challenges when considering the therapeutic utility of these 
molecules. However, 48 of the 65 polyphenols we explored here are 
predicted to have high gastrointestinal absorption (Supplementary 
Table 2) and different methodologies are available to increase bio-
availability of natural compounds40,41. Additionally, in the same 
way that the polyphenol phlorizin led to the discovery of new 
strategies for disease treatment resulting in the development of 
new compounds with higher efficacy42, we believe that the present 
methodology can help us identify polyphenol-based candidates for 
drug development.

The methodology introduced here offers a foundation for the 
mechanistic interpretation of alternative pathways through which 
polyphenols can affect health, such as the combined effect of differ-
ent polyphenols37,43 and their interactions with drugs44. To address 
such synergistic effects, we need ground-truth data on these aspects. 
The developed methodology can be applied to other food-related 
chemicals, providing a framework by which to understand their 

Table 2 | top-ranked polyphenols

Polyphenol AuC AuC CIa Precisionb Concentration in bloodc (μM) No. of mapped targets LCC size

Coumarin 0.93 [0.86–0.98] 0.6 7 1

Piceatannol 0.86 [0.77–0.94] 0.6 39 23

Genistein 0.82 [0.75–0.89] 0.7 [0.006–0.525] 18 6

Ellagic acid 0.79 [0.63–0.92] 0.6 42 19

EGCG 0.78 [0.70–0.86] 0.8 51 17

Isoliquiritigenin 0.75 [0.77–0.94] 0.6 10 8

resveratrol 0.75 [0.66–0.82] 1 63 25

Pterostilbene 0.73 [0.61–0.84] 0.6 5 2

Quercetin 0.73 [0.64–0.81] 1 [0.022–0.080] 216 140

(−)-Epicatechin 0.65 [0.49–0.80] 0.8 0.625 11 3

Polyphenols for which prediction of therapeutic effects by network proximity to diseases was most successful. The table shows polyphenols with AUC > 0.6 and precision > 0.6. aCIs calculated with 2,000 
bootstraps with replacement and sample size of 50% of the diseases (150 / 299). bPrecision was calculated based on the top 10 polyphenols after their ranking based on the distance (dc) of their targets to 
the disease proteins and considering only predictions with Z-score < −0.5. cConcentrations of polyphenols in blood were retrieved from the Human Metabolome Database (HMDB).
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Fig. 4 | Relationships among gene expression perturbation, network proximity and the therapeutic effects of polyphenols on diseases. a, Schematic 
representation of the relationships between the extent to which a polyphenol perturbs disease genes expression, its proximity to the disease genes and 
its therapeutic effects. b, Interactome neighbourhood showing the modules of skin diseases, genistein and cerebrovascular disorders. The skin diseases 
module has 10 proteins with high perturbation scores (>2) in the treatment of the MCF7 cell line with 1 µM of genistein. Genes associated with skin 
disease are significantly enriched among the most differentially expressed genes, and the maximum perturbation score among disease genes is higher 
in skin disease than cerebrovascular disorders. c, Among the diseases in which genes are enriched with highly perturbed genes, those with therapeutic 
associations show smaller network distances to the polyphenol targets than those without. The same trend is observed in treatments of the polyphenols 
quercetin, resveratrol and myricetin. Boxplots show the median (horizontal line), 25th and 75th percentiles (lower and upper boundaries, respectively). 
Whiskers extend to data points that lie within 1.5 interquartile ranges of the 25th and 75th quartiles; and observations that fall outside this range are 
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health effects. Future research may help us also account for the 
way food-related chemicals affect endogenous metabolic reactions, 
impacting not only signalling pathways but also catabolic and ana-
bolic processes. Finally, the methodology provides a framework 
to interpret and find causal support for associations identified in 
observational studies. Taken together, the proposed network-based 
framework has the potential to systematically reveal the mechanism 
of action underlying the health benefits of polyphenols, offering a 
logical, rational strategy for mechanism-based drug development of 
food-based compounds.

Methods
Building the interactome. The human interactome was assembled from 16 
databases containing six different types of protein–protein interactions (PPIs): 
(1) binary PPIs tested by high-throughput yeast two-hybrid (Y2H) experiments45; 
(2) kinase–substrate interactions from literature-derived low-throughput and 
high-throughput experiments from KinomeNetworkX46, Human Protein Resource 
Database (HPRD)47 and PhosphositePlus48; (3) carefully literature-curated PPIs 
identified by affinity purification followed by mass spectrometry (AP-MS) and 
from literature-derived low-throughput experiments from InWeb49, BioGRID50, 
PINA51, HPRD52, MINT53, IntAct53 and InnateDB54; (4) high-quality PPIs from 
three-dimensional protein structures reported in Instruct55, Interactome3D56 
and INSIDER57; (5) signalling networks from literature-derived low-throughput 
experiments as annotated in SignaLink2.0 (ref. 58) and (6) protein complexes 
from BioPlex2.0 (ref. 59). The genes were mapped to their Entrez ID based on the 
National Center for Biotechnology Information (NCBI) database as well as their 
official gene symbols. The resulting interactome includes 351,444 PPIs connecting 
17,706 unique proteins (Supplementary Data 1). The LCC has 351,393 PPIs and 
17,651 proteins.

Polyphenols, polyphenol targets and disease proteins. We retrieved 759 
polyphenols from the PhenolExplorer database4. The database lists polyphenols 
with food composition data or that have been profiled in biofluids after 
interventions with polyphenol-rich diets. For our analysis, we only considered 
polyphenols that (1) could be mapped in PubChem IDs, (2) were listed in the 
Comparative Toxicogenomics (CTD) database24 as having therapeutic effects on 
human diseases and (3) had protein-binding information present in the STITCH 
database60 with experimental evidence (Fig. 1a). After these steps, we considered 
a final list of 65 polyphenols, for which 598 protein targets were retrieved 
from STITCH (Supplementary Table 1). We considered 3,173 disease proteins 
corresponding to 299 diseases retrieved from Menche et al.15. Gene ontology 
enrichment analysis of protein targets was performed using the Bioconductor 
package clusterProfiler with a significance threshold of P < 0.05 and Benjamini–
Hochberg multiple testing correction with Q < 0.05.

Polyphenol–disease associations. We retrieved the polyphenol–disease 
associations from the Comparative Toxicogenomics Database (CTD). We 
considered only manually curated associations labelled as therapeutic. By 
considering the hierarchical structure of diseases along the MeSH tree, we 
expanded explicit polyphenol–disease associations to also include implicit 
associations. This procedure was performed by propagating associations in  
the lower branches of the MeSH tree to consider diseases in the higher levels  
of the same tree branch. For example, a polyphenol associated with heart  
diseases would also be associated with the more general category of cardiovascular 
diseases. By performing this expansion, we obtained a final list of 1,525  
known associations between the 65 polyphenols and the 299 diseases  
considered in this study.

Network proximity between polyphenol targets and disease proteins.  
The proximity between a disease and a polyphenol was evaluated using a  
distance metric that takes into account the shortest path lengths between 
polyphenol targets and disease proteins16. Given S, the set of disease proteins,  
T, the set of polyphenol targets and d(s,t), the shortest path length between  
nodes s and t in the network, we define:

dc (S, T) =

1
∥T∥

∑
t∈T

min
s∈S

d (s, t) (1)

We also calculated a relative distance metric (Zdc
) that compares the absolute 

distance dc(S,T) between a disease and a polyphenol with a reference distribution 
describing the random expectation. The reference distribution corresponds to the 
expected distances between two randomly selected groups of proteins matching 
the size and degrees of the original disease proteins and polyphenol targets in 
the network. It was generated by calculating the proximity between these two 
randomly selected groups across 1,000 iterations. The mean μd(S,T) and standard 
deviation σd(S,T) of the reference distribution were used to convert the absolute 
distance dc into the relative distance Zdc, defined as:

Zdc =

d − μdc(S,T)

σdc(S,T)
(2)

We performed a degree-preserving random selection, but due to the scale-free 
nature of the human interactome, we avoid repeatedly choosing the same 
(high-degree) nodes by using a binning approach in which nodes within a certain 
degree interval were grouped together such that there were at least 100 nodes in the 
bin. Supplementary Data 2 reports the proximity scores dc and Zdc for all pairs of 
diseases and polyphenols.

Area under receiving operating characteristic curve analysis. For each 
polyphenol, we used the AUC to evaluate how well the network proximity 
distinguishes diseases with known therapeutic associations from all the others 
in the set of 299 diseases. The set of known associations (therapeutic) retrieved 
from the CTD were used as positive instances and all unknown associations 
were defined as negative instances, and the area under the receiving operating 
characteristic curve was computed using the implementation in the Scikit-learn 
Python package. Furthermore, we calculated 95% CIs using the bootstrap 
technique with 2,000 resamplings with sample sizes of 150 each. Considering that 
the AUC provides an overall performance, we also searched for a metric to evaluate 
the top-ranking predictions. For this analysis, we calculated the precision of the top 
10 predictions, considering only the polyphenol–disease associations with relative 
distance Zdc < −0.5 (ref. 16).

Analysis of network proximity and gene expression deregulation. We retrieved 
perturbation signatures from the Connectivity Map database (https://clue.io/) for 
the MCF7 cell line after treatment with 21 polyphenols. These signatures reflect 
the perturbation of the gene expression profile caused by the treatment with that 
particular polyphenol relative to a reference population, which comprises all 
other treatments in the same experimental plate27. For polyphenols having more 
than one experimental instance (such as time of exposure, cell line and dose), 
we selected the one with highest distil_cc_q75 value (75th quantile of pairwise 
Spearman correlations in landmark genes, https://clue.io/connectopedia/glossary). 
We performed gene set enrichment analysis61 to evaluate the enrichment of 
disease genes among the top deregulated genes in the perturbation profiles. This 
analysis offers enrichment scores that have small values when genes are randomly 
distributed among the ordered list of expression values and high values when they 
are concentrated at the top or bottom of the list. The enrichment score significance 
is calculated by creating 1,000 random selections of gene sets with the same size as 
the original set and calculating an empirical P value by considering the proportion 
of random sets resulting in enrichment scores smaller than the original case.  
The P values were adjusted for multiple testing using the Benjamini–Hochberg 
method. The network proximity dc of disease proteins and polyphenol targets for 
diseases with significant enrichment scores were compared according to their 
therapeutic and unknown-therapeutic associations using the Student’s t-test.  
The relevant code for calculating the network proximity, AUCs and enrichment 
scores can be found at https://github.com/italodovalle/polyphenols.

Platelet isolation. Human blood collection was performed as previously 
described in accordance with the Declaration of Helsinki and ethics regulations 
with Institutional Review Board approval from Brigham and Women’s Hospital 
(P001526). Healthy volunteers did not ingest known platelet inhibitors for at 
least 10 days prior. Citrated whole blood underwent centrifugation with a slow 
brake (177 × g, 20 minutes), and the PRP fraction was acquired for subsequent 
experiments. For washed platelets, PRP was incubated with 1 μM prostaglandin 
E1 (Sigma, P5515) and immediately underwent centrifugation with a slow brake 
(1,000 × g, 5 minutes). Platelet-poor plasma was aspirated, and pellets were 
resuspended in platelet resuspension buffer (PRB; 10 mM HEPES, 140 mM NaCl, 
3 mM KCl, 0.5 mM MgCl2, 5 mM NaHCO3, 10 mM glucose, pH 7.4).

Platelet aggregometry. Platelet aggregation was measured by turbidimetric 
aggregometry as previously described62. Briefly, PRP was pretreated with RA 
for 1 hour before adding 250 μl to siliconized glass cuvettes containing magnetic 
stir bars. Samples were placed in Chrono-Log Model 700 Aggregometers before 
the addition of various platelet agonists. Platelet aggregation was monitored for 
6 minutes at 37 °C with a stir speed of 1,000 r.p.m. and the maximum extend of 
aggregation recorded using AGGRO/LINK8 software. In some cases, dense granule 
release was simultaneously recorded by supplementing samples with Chrono-Lume 
(Chrono-Log, 395) according to the manufacturer’s instructions.

Platelet α-granule secretion and integrin αIIbβ3 activation. Changes in 
platelet surface expression of P-selectin (CD62P) or binding of Alexa Fluor 
488-conjugated fibrinogen were used to assess α-granule secretion and integrin 
αIIbβ3 activation, respectively. First, PRP was preincubated with RA for 1 hour, 
followed by stimulation with various platelet agonists under static conditions 
at 37 °C for 20 minutes. Samples were then incubated with APC-conjugated 
anti-human CD62P antibodies (BioLegend, 304910) and 100 μg ml−1 Alexa Fluor 
488-Fibrinogen (Thermo Scientific, F13191) for 20 minutes before fixation in 
2% (v/v) paraformaldehyde (Thermo Scientific, AAJ19945K2). For each sample, 
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50,000 platelets were processed using a Cytek Aurora spectral flow cytometer. 
Percent positive cells were determined by gating on fluorescence intensity 
compared to unstimulated samples.

Platelet cytotoxicity. Cytotoxicity was tested by measuring lactate dehydrogenase 
(LDH) release by permeabilized platelets into the supernatant63. Briefly, washed 
platelets were treated with various concentrations of RA for 1 hour, before isolating 
supernatants via centrifugation (15,000 × g, 5 min). A Pierce LDH Activity Kit 
(Thermo Scientific, 88953) was then used to assess supernatant levels of LDH.

Immunoprecipitation and western blot. Washed platelets were pretreated with 
RA for 1 hour, followed by a 15 minute treatment with Eptifibatide (50 μM). 
Platelets were then stimulated with various agonists for 5 minutes under stirring 
conditions (1,000 r.p.m., 37 °C). Platelets were lysed on ice with RIPA Lysis Buffer 
System (Santa Cruz, sc-24948) and supernatants clarified via centrifugation 
(15,000 × g, 10 min, 4 °C). For immunoprecipitation of FYN, lysates were first 
precleared of IgG by incubating with Protein A agarose beads (Cell Signaling 
Technologies, 9863S) for 30 minutes at 4 °C, before isolation of the supernatant 
via centrifugation (15,000 × g, 10 min, 4 °C). Supernatants were incubated with 
anti-FYN antibodies (Abcam, 2A10) overnight at 4 °C before incubation with 
Protein A beads for 1 hour. Beads were then washed five times with NP-40 lysis 
buffer (144 mM Tris, 518 mM NaCl, 6 mM EDTA, 12 mM Na2VO3, 33.3% (v/v)  
NP-40, Halt protease inhibitor cocktail (Thermo, 78429)).

For western blot analysis, total cell lysates or immunoprecipitated FYN were 
reduced with Laemmli Sample Buffer (Bio-Rad, 1610737) and proteins separated 
by molecular weight in PROTEAN TGX precast gels (Bio-Rad, 4561084). Proteins 
were transferred to PVDF membranes (Bio-Rad, 1620174) and probed with either 
4G10 (Milipore, 05-321), a primary antibody clone that recognizes phosphorylated 
tyrosine residues, or primary antibodies that probe for the site-specific 
phosphorylation of SFKs (p-Tyr416) within their activation loop. Membranes were 
incubated with horseradish peroxidase-conjugated secondary antibodies (Cell 
Signaling Technologies, 7074S) to catalyse an electrochemiluminescent reaction 
(Thermo Scientific, PI32109). Membranes were visualized using a Bio-Rad 
ChemiDoc Imaging System, and densitometric analysis of protein lanes was 
conducted using ImageJ (NIH, Version 1.52a).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available at https://github.com/
italodovalle/polyphenols and within the paper and its Supplementary  
Information files.

Code availability
Computer code is available at https://github.com/italodovalle/polyphenols.
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treated with either rosmarinic acid or a vehicle control. Therefore, any donor-specific or temporal effects were paired and accounted for.

Blinding Samples were not blinded. This was due to the nature of our in vitro experiments, where platelets isolated from healthy donors were treated 
with either rosmarinic acid or a vehicle control. Given that our experimental workflow encompassed automated data acquisition, analysis and 
interpretation (flow cytometry, aggregometry, densitometry, colorimetry), we believe that blinding the operator to platelets treated with 
rosmarinic acid or control was not required.
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Antibodies
Antibodies used 1. anti-Fyn (Abcam, 2A10) 

2. 4G10 (Milipore, 05-321) 
3. anti-Phospho-Src Family (Tyr416) (Cell Signaling Technology, #2101)

Validation 1. anti-Fyn 
 
Suitable for: Western blot (WB), enzyme-linked immunosorbent assay (ELISA), Immunohistochemistry-parrafin (IHC-P), Flow 
Cytometry, Immunocytochemisty (ICC), Immunofluorescence (IF). 
Previously validated in: Human breast tissue, human brain tissue, U251 cells and HEK293 cells. 
References: Yamada Y  et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis 
of DNA methylation. Int J Mol Med 33:1355-63 (2014). 
Product link: https://www.abcam.com/fyn-antibody-2a10-ab119855.html?productWallTab=ShowAll 
 
2. Anti-Phosphotyrosine Antibody, clone 4G10® 
 
Suitable for: WB 
Previously validated in: Roweth, H.G., Yan, R., Bedwani, N.H. et al. Citalopram inhibits platelet function independently of SERT-
mediated 5-HT transport. Sci Rep 8, 3494 (2018). 
Product link: https://www.emdmillipore.com/US/en/product/Anti-Phosphotyrosine-Antibody-
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3. anti-Phospho-Src Family (Tyr416) 
Suitable for: WB 
Previously validated in Roweth, H.G., Yan, R., Bedwani, N.H. et al. Citalopram inhibits platelet function independently of SERT-
mediated 5-HT transport. Sci Rep 8, 3494 (2018). 
Product link: https://www.cellsignal.com/products/primary-antibodies/phospho-src-family-tyr416-antibody/2101

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) N/A

Authentication N/A

Mycoplasma contamination N/A

Commonly misidentified lines
(See ICLAC register)

N/A

Human research participants
Policy information about studies involving human research participants

Population characteristics Healthy male and females ranging in age from 21-60 volunteered freely to participate in the study

Recruitment The study involved donation of a blood sample and was performed in accordance with an IRB approved protocol (Protocol #: 
2012P001526)

Ethics oversight Institutional Review Board approval from Brigham and Women’s Hospital (P001526)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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