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Abstract

A central goal of postgenomic biology is the elucidation of the regulatory relationships among
all cellular constituents that together comprise the ‘genetic network’ of a cell or microorganism.
Experimental manipulation of gene activity coupled with the assessment of perturbed transcrip-
tome (i.e., global mRNA expression) patterns represents one approach toward this goal, and may
provide a backbone into which other measurements can be later integrated.

We use microarray data on 287 single gene deletion Saccharomyces cerevisiae mutant strains
to elucidate generic relationships among perturbed transcriptomes. Their comparison with a
method that preferentially recognizes distinct expression subpatterns allows us to pair those
transcriptomes that share localized similarities. Analyses of the resulting transcriptome similar-
ity network identify a continuum hierarchy among the deleted genes, and in the frequency of
local similarities that establishes the links among their reorganized transcriptomes. We also <nd a
combinatorial utilization of shared expression subpatterns within individual links, with increasing
quantitative similarity among those that connect transcriptome states induced by the deletion of
functionally related gene products. This suggests a distinct hierarchical and combinatorial orga-
nization of the S. cerevisiae transcriptional activity, and may represent a pattern that is generic
to the transcriptional organization of all eukaryotic organisms.

Color versions of both the Supplementary Material and the article are available at http://
angel.elte.hu/bioinf.
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1. Introduction

In the majority of single gene deletion Saccharomyces cerevisiae mutant strains the
expression of a variable number of other genes is altered [1]. This suggests the presence
of a set of direct and indirect regulatory relationships among all cellular constituents
that together comprise the ‘genetic network’ of a cell or microorganism [2,3]. The elu-
cidation of the complete genetic network of an organism is not possible at present due
to insuJcient availability of microarray data and due to the fact that post-transcriptional
regulatory interactions are reKected only indirectly in mRNA expression measure-
ments. Nevertheless, experimental manipulation of gene activity coupled with the as-
sessment of perturbed transcriptome (i.e., global mRNA expression) patterns represents
an important initial approach toward this goal, and may provide a backbone into which
other measurements can be later integrated [4].
Here we use microarray data [1] on 287 single gene deletion S. cerevisiae mutant

strains [5] to elucidate generic relationships among perturbed transcriptomes. Their
comparison with a method that preferentially recognizes distinct expression subpatterns
allows us to pair those transcriptomes that share localized similarities. Analyses of
the resulting transcriptome similarity network identify a continuum hierarchy among
the deleted genes, and in the frequency of local similarities that establishes the links
among their reorganized transcriptomes. We also <nd a combinatorial utilization of
shared expression subpatterns within individual links, with increasing quantitative sim-
ilarity among those that connect transcriptome states induced by the deletion of func-
tionally related gene products. This suggests a distinct hierarchical and combinatorial
organization of the S. cerevisiae transcriptional activity, and may represent a pattern
that is generic to the transcriptional organization of all eukaryotic organisms.

2. Systems and methods

2.1. Data sets and quantitation of average transcriptome changes

Data was downloaded from Hughes et al. [1], which contains two large, internally
consistent, global mRNA expression subsets for the yeast, S. cerevisiae. One subset
provides steady-state mRNA expression data in wild-type S. cerevisiae sampled 63
separate times (the ‘control’ set). The other subset provides individual measurements
on the genomic expression program of 287 single gene deletion mutant S. cerevisiae
strains [5] grown under identical cell culture conditions as wild-type yeast cells (the
‘perturbation’ set).
We arranged the data sets into two separate matrices as they were listed in the

original data <les, and containing base 10 logarithmic values. For the statistical char-
acterization of the two matrices we use the following notations. The data matrix,
e, has N rows (each of them containing the expression levels of one gene) and
M columns (each containing the expression levels of all genes in one microarray
experiment, i.e., one measured transcriptome). The expression level of the ith gene in
the jth array is eij, the average expression level of this gene throughout the M arrays
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is Ai =M−1 ∑M
j=1 eij, and the standard deviation of the expression level of the same

gene is �i =
√
M−1

∑M
j=1 (eij − Ai)2. The average expression level of genes in the jth

array is aj = N−1 ∑N
i=1 eij and the standard deviation of the expression level in the

same array is 
j =
√
N−1

∑N
i=1 (eij − aj)2.

2.2. Correlation search method

To search for correlations among transcriptomes, we compared each pair of tran-
scriptomes individually. For any given transcriptome pair, <rst we identi<ed the list
of genes with known expression level values in both transcriptomes. (In the prepared
data <le, we called a value known, if it was not missing and was not +2 or −2, the
latter two values indicating an experimental cutoN.) Next, we de<ned a segment (i.e.,
a small subset of the transcriptomes) with size s, and jump t, both equal to 30, (see
the Supplementary Material for analyses with other parameters). We placed a segment
on the <rst s genes with known expression values in both transcriptomes. The two
data sets to be compared are now the 1; 2; : : : ; s: gene expression level values of the
<rst selected transcriptome and the 1; 2; : : : ; s: gene expression level values of the second
selected transcriptome. We denoted these two sets (two vectors) by e1={e11; e21; : : : ; es1}
and e2 = {e12; e22; : : : ; es2}, respectively. Next, we computed the mean values (M1 and
M2) and standard deviations (
1 and 
2) of these two sets: M1 = s−1 ∑s

i=1 ei1 and


1 =
√
s−1

∑s
i=1(ei1 −M1)2 (M2 and 
2 were obtained similarly).

For the measure of similarity between the two segments, e1 and e2, we used the
absolute value of the correlation: C12= |(s
1
2)−1 ∑s

i=1 (ei1−M1)(ei2−M2)|. Next, the
segment of length s was shifted multiple times by steps of t, and C12 was computed
for the segment containing the genes {t; t+1; : : : ; t+ s}, then for the segment with the
genes {2t; 2t + 1; : : : ; 2t + s}, etc. Except where explicitly mentioned, the step size is
equal to the length of the segment: t= s. The similarity score between the two selected
transcriptomes was de<ned as the m = 10th largest C12 value measured for them. On
the resulting graph two nodes were connected, if the similarity score computed for the
two transcriptomes they represent exceeded a <xed C threshold. Note, that while the
three parameters: s; m and C are preassigned, changing the values of s; m and C,
or randomly reordering the genes’ listing will not alter the essential features of the
observed network. Also, after scrambling the expression values in each transcriptome
independently (i.e., removing any potential correlations between the transcriptomes),
the stepwise similarity search method does not identify any links, con<rming that the
uncovered transcriptome similarity network is not a numerical artifact of the algorithm
(see the Supplementary Material for additional details).

2.3. Spectral analysis

The adjacency matrix of a graph, G, with N vertices is an N × N symmetric ma-
trix, A, where Aij = 1 or Aij = 0, if the ith and jth vertices are connected, or not,
respectively. Diagonal entries are 0: Aii = 0 for each i. The spectrum—i.e., the set of
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eigenvalues—of the graph’s adjacency matrix, A, is also called the spectrum of the
graph, G, itself [6]. The inverse participation ratio of a normalized eigenvector of G
is the sum of the fourth powers of the components of that eigenvector. Localized
eigenvectors can be identi<ed by their high inverse participation ratios. On the other
hand, highly localized eigenvectors indicate the structural predominance of a handful
of vertices on the graph G, and therefore they can be used to detect various graph
structures even for small graphs with only a few hundred vertices [7]. Further details
are provided in the Supplementary Material.

2.4. Statistical characterization of the transcriptome similarity network

For the analysis displayed on Fig. 3a, for each gene product the following <elds of its
YPD [8] entry were used: Cellular Role, Biochemical Function, Molecular Environment
and Subcellular Localization. We <rst analyzed each pair of the 287 transcriptomes
separately using the cellular roles of the products of the two deleted genes (many
possessing more than one cellular role). The union (i.e., the cellular role categories on
at least one of the lists) and the intersection (i.e., the cellular role categories on both
lists) of the two lists were created. We de<ned the identity, I , of the two lists, as the
ratio of the number of items in the intersection vs. the union. If the union contained
no categories (or only the category ‘unknown’), i.e., none of the two gene products
had a known category, we ignored this transcriptome pair.
At each similarity threshold value, C, Fig. 3a displays the average I value for those

transcriptome pairs that the stepwise similarity search method predicted to be coupled
stronger than C. This test was performed for all four databases separately.
For each adjacent pair of the similarity graph’s links the 10 transcriptome segments

establishing the two links were listed. The identity, I , of these two lists is shown on
Fig. 4b. Similarly, the 10 genes with the highest contributions to the two links were
listed, and the identity of these lists was computed. Here, the contribution of a gene to
a link denotes the absolute value of the product of the expression values of the gene
in the two connected transcriptomes.

3. Results and discussion

To begin uncovering important generic characteristics of transcriptional organization,
we assessed the degree of similarity among the genomic expression program of 287
single gene deletion mutant S. cerevisiae strains [1]. Initial statistical analyses indicated,
that compared to the wild-type yeast transcriptome, on average the expression level of
only about one-tenth of all genes were aNected (see the Supplementary Material and
http://angel.elte.hu/bioinf for details). However, most current mathematical
algorithms compare transcriptomes based on their global properties thereby missing
more subtle local relationships. Moreover, the analysis of singly measured transcrip-
tomes is hampered by the observed inherent Kuctuations in gene expression levels
(see Ref. [1], and the Supplementary Material). Therefore, we introduced an analytical

http://angel.elte.hu/bioinf
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approach that both attenuates the eNect of gene expression Kuctuations and is prefer-
entially sensitive to the recognition of local similarities among transcriptomes.
The method, illustrated in Fig. 1a, divides each transcriptome into L short segments

and systematically searches each pair of transcriptomes for similar expression patterns
on all L segments. For transcriptomes j1 and j2, <rst we sequentially determine the
absolute value of the correlation coeJcient, C, between the same kth segment of
transcriptomes j1 and j2. If we <nd at least m segments with correlation coeJcients
exceeding in absolute value a pre-assigned C0 similarity parameter, we then consider
transcriptomes j1 and j2 to be locally similar and denote this relationship by connect-
ing them with a link. Increasing the value of C0 will increasingly limit connections
to highly correlated transcriptome pairs. Decreasing C0 will gradually connect more
weakly similar transcriptome pairs as well, resulting in an increase in both the number
of connected transcriptomes and the density of links among them (Fig. 1b).
Ultimately, the totality of the links creates a similarity network in which each node

represents one of the 287 deleted genes and their corresponding transcriptional response
programs. For example, in Fig. 1c, the detailed topology of the similarity network is
shown for C0 = 0:8, which corresponds to links among transcriptome states that are at
least 80% similar in their ten most similar segments. At this similarity level we <nd
that ∼ 40% of the perturbed transcriptomes (113 out of 287) are linked to each other,
the most highly connected transcriptomes often forming easily discernable loops within
a large, central cluster (Fig. 1d). In contrast, when two transcriptomes are connected
only to each other, but are disconnected from all other components (Fig. 1c), they
share highly speci<c response similarities likely to be related to the speci<c eNect of
their perturbations.
To start deciphering the detailed relationships among the deleted S. cerevisiae genes,

we <rst assessed the large-scale features of the similarity network’s topology. We
initially created three idealized test graphs to compare them with the largest clus-
ter of the measured graph. The test graphs include an uncorrelated random graph
[9], a small-world graph [10], and a scale-free graph [11], representing the three
major network families known in graph theory [12]. Fig. 2a depicts the descend-
ing sequence of connectivities for the transcriptome graph and the three test graphs,
and Fig. 2b–d display the inverse participation ratios of the graph’s eigenvectors
vs. the corresponding eigenvalues, a measure that is known to be sensitive to the
graph’s topology even for small graphs [7]. At all similarity levels we <nd that the
scale-free test network’s connectivity distribution (Fig. 2a) and its spectral proper-
ties (Fig. 2d) practically overlap with that of the S. cerevisiae transcriptome graph,
a topology that is apparently also shared by the transcriptome similarity network of
Caenorrhabditis elegans [13] (Supplementary Material). From a biological point of
view, this demonstrates that the deletion of certain gene products elicits transcrip-
tional pro<les with a signi<cant number of expression subpatterns induced very sim-
ilarly among various other perturbed transcriptomes. It also suggests a potential reg-
ulatory relationship among their corresponding genes such that the ones possessing
many shared expression subpatterns directly or indirectly regulate those that con-
tain comparatively fewer [4]. Moreover, it shows that the observed similarity re-
lationships self-organize into a continuum hierarchy in such a way, that of nodes
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Fig. 1. The transcriptome similarity search method; available in color at http://angel.elte.hu/bioinf.
(a) Schematic display of a hypothetical microarray data set with 3 experiments (e1–e3), and 50 genes.
On the <ve gene segments of 10 genes each, the three experiments are similar to a diNerent extent, as indi-
cated on the right. In the <rst segment there is a high similarity between all three experiments. The second
segment displays similarity only between e1 and e2, while the expression values of the genes in the fourth
segment are highly dissimilar. (b) Color plot of the transcriptome similarity network at the indicated C0 sim-
ilarity thresholds. Each node represents a transcriptome and two transcriptomes are connected if they contain
suJcient numbers of local similarities in their genomic expression patterns. Links between nodes are colored
according to the similarity level between the two connected transcriptomes; green (0:8¡C¡ 0:84), yellow
(0:84¡C¡ 0:88), orange (0:88¡C¡ 0:92) and red (C¿ 0:92) are used. (c) Enlarged view of the graph
obtained for C=0:8. Each node is labeled with the name of the deleted gene/experiment [1]. (d) A detailed
diagram showing four highly connected nodes (marked with white in Fig. 1c) and <ve high-con<dence links
(C¿ 0:92) among them, with the ten most dominant genes coupling a pair of experiments listed for each
connection. Those involved in all <ve connections are shown in red.
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Fig. 2. The topological characterization of the similarity graph’s central component; available in color at
http://angel.elte.hu/bioinf. (a) Connectivity distribution for linked transcriptomes (black) vs. an uncorrelated
random (blue), a small-world (green), and a scale-free graph (red) at C=0:7. In the test graphs, the number
of links and nodes are the same as in the measured graph. (b–d) Spectral comparison of the measured graph
and the three test graphs. For a detailed description of this analysis method see Ref. [7].
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(i.e., transcriptomes) with decreasing connectivity increasingly higher numbers
occur.
To further understand the position of individual nodes (as deleted genes) within

the similarity network, we <rst examined the relationship between any two connected
transcriptomes and the biochemical and cellular characteristics of their corresponding
gene products, according to their categorization in the Yeast Protein Database (YPD)
[8]. As shown in Fig. 3a, we <nd that with increasing C0 similarity threshold there is
an increased likelihood that the connected transcriptomes represent gene products with
an identical cellular role, biochemical function, molecular environment and subcellular
localization. We observe, however, that to an extent local similarities are also shared
among transcriptome pairs whose corresponding gene products participate in unrelated
cellular activities, thus suggesting a conserved utilization of expression subpatterns.
We also determined the identity and cellular role of the corresponding gene prod-

ucts for the most highly connected transcriptomes. In a decreasing order of connectivity
Fig. 3b lists the 25 most connected nodes (deleted gene products) at various C0 thresh-
old values. Note that the decreasing order of connectivity for the linked transcriptomes
are not completely independent of C0, yet many of the same nodes with only slightly
modi<ed order appear as most connected for a broad range of C0 values. Speci<-
cally, the deletion of ymr031w-a, yhl029c (genes with unknown function), yel008w
(stress response), gcn4 (transcriptional activator), sir2 (histone deacetylase) and swi4
(transcription factor) elicits transcriptional responses that contain the highest number
of shared expression subpatterns, irrespective of the stingency of similarity. A similar
trend with a lower number of shared subpatterns is observed upon the deletion of e.g.,
erg2, erg3 and yer044c (ergosterol biosynthesis). In contrast, the deletion of gene prod-
ucts with mitochondrial functions (yer050c, msu1, rml2) elicits expression subpattern
changes that are shared at a high stringency level of similarity with each other, but
disproportionately less with those transcriptomes that are induced by the deletion of
genes with unrelated functions. Thus, irrespective of the chosen similarity threshold, the
deletion of transcriptional activators, global regulators of chromosome state, and those
with a potential to induce stress response (e.g., through changes in membrane lipid
composition [14]) appear to elicit the largest number of shared expression subpatterns.
Links among paired transcriptomes are established through the combinations of var-

ious transcriptome segments prompting us to assess them and their most prominent
genes. To appraise the segment composition of individual links we calculated the frac-
tion of shared segments between all pairs of links connected to the same transcriptome.
We <nd that those pairs of links that are established at a higher stringency of similarity
between any three nodes share an increasing number of identical segments (Fig. 4b).
Yet, it is apparent that on average the number of shared segments do not exceed more
than ∼ 40% of all segments. There is also a substantial statistical variability in such a
way that for high-con<dence loops within the large, central cluster (see e.g., Fig. 1d)
such similarities occur more frequently, a pattern that is highly similar for the most
dominant genes within all pairs of adjacent connections (Fig. 4b).
We also quanti<ed the participation of individual segments within all links, and

observed that their distribution follows a power-law with an exponent close to � = 3
(Fig. 4a). This indicates that in their totality shared expression subpatterns participate
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Fig. 3. The comparison of the deleted genes with connected transcriptome states; available in color at
http://angel.elte.hu/bioinf. (a) The average identity of the category lists of two deleted genes that de<ne
two connected transcriptome states of the graph are shown at the indicated similarity thresholds. For the
classi<cation of yeast genes, four selected categories of each YPD [8] entry were used. Genes missing from
the databases or listed as ‘unknown’ were excluded from the analyses. (b) The list of transcriptomes/deleted
genes with the highest number of connections on the similarity graph at the indicated similarity threshold
values. Their number of links is given in parenthesis. Those showing the highest connectivity at C = 0:80
column are colored black, others are listed in gray. Vertical color bars indicate the cellular role categories
in the YPD [8] classi<cation. Metabolism and energy generation (red), DNA/RNA related (yellow), pro-
tein synthesis and modi<cation (green), cell stress (magenta), cell cycle, cell fate, mating (blue), signal
transduction and transport (gray) and other (light blue) are shown.
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Fig. 4. The characterization of links between transcriptome states; available in color at http://angel.elte.hu/
bioinf. (a) The descending sequence of transcriptome segment usage frequencies for all the 210 segments.
(b) The average percent (± standard deviation) of identical transcriptome segments (red) and identical genes
within segments (blue) in any two adjacent links of the transcriptome similarity network, shown at diNerent
similarity threshold levels. (c) The 10 transcriptome segments used most frequently in establishing links in
the transcriptome similarity network, and the 10 genes most frequently dominant in each of them. Vertical
color codes indicate the cellular role categories in the YPD [8] classi<cation, as described in Fig. 3.

in establishing links along a continuum hierarchy from a few of them participating in
many connections (the most stereotypic similarities) to many being shared among only
a few transcriptomes (the most speci<c similarities). To identify and characterize the
most prominent genes within all similarity links we <rst selected the ten most common
segments that participate in connecting the various nodes (Fig. 4c, left column). Next,
for each of these segments, we determined the ten genes with the strongest overall
contribution to the coupling of all linked transcriptome pairs. As shown in Fig. 4c, there
is a signi<cant variability in the cellular role of genes among the diNerent segments, the
highest percentage being those with unknown function (10–60% in all 10 segments). In
general, however, there are many that plays a role in stress response, various aspects of
RNA- and protein metabolism or in other metabolic processes, a pattern that is similar
to that observed in yeast cells upon various environmental challenges [15,16].
The elucidation of the complete genetic network of S. cerevisiae is not possible at

present due to available microarray data being restricted to a limited number of single

http://angel.elte.hu/bioinf
http://angel.elte.hu/bioinf
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gene deleted strains [1], the continued re<nement of its genome [17], and by the fact
that post-transcriptional regulatory interactions are reKected only indirectly in mRNA
expression data [4]. Yet, our comparison and analyses of the expression subpatterns
of 287 various perturbed S. cerevisiae transcriptomes enabled us to uncover impor-
tant insights into the framework of its organization on a transcriptional level. Notably,
with a novel, cut-oN based method we identify a continuum hierarchy in the regulatory
relationship among the yeast transcriptional elements that as a whole suggests a robust
and error-tolerant scale-free topology [11] of the S. cerevisiae genetic network. There
is the additional <nding of a distinct combinatorial utilization of expression subpat-
terns, which in their totality also display a continuum hierarchy in their participation
frequency and whose shared similarities are proportional to the functional relatedness
of their corresponding gene products.
In agreement with our result, Featherstone and Broadie [18] have recently demon-

strated that besides the well-known statistical and comparative methods, random graph
theory is also a powerful tool for the analysis of large scale gene perturbation experi-
ments. They used a simple statistical method (built on P values) to create a directed
network of the genes in the same data set that we have used in the present study. The
underlying undirected graph was found to display a power-law behavior in the connec-
tivity of nodes, which is a <ngerprint of scale-free networks. A mathematically more
sound statement, but only a prediction, concerning the same data set has been made
by Wagner [19]. In this work a directed network of genes was hypothesized by a more
careful analysis of the statistical properties of the data. The unnecessary elimination
of the ‘noisy’ values from the data set by P tests, as above, would have meant the
removal of important information buried under noise. Moreover, in Wagner’s work the
directionality of the network has been properly taken into account. Also, it is pointed
out that a complete power-law behavior cannot hold for any distribution derived from
real data, only if a cut-oN is included in the description.
Biological activities within S. cerevisae are thought to arise from shared utilization of

its proteome comprised mostly of protein complexes with a conserved core and transient
edges [20,21]. Together with other regulatory interactions, transcriptional activities play
a pivotal role in establishing these dynamic compositions according to developmental
states and environmental eNects. The combination of microarray data with the presence
of known and putative regulatory motifs in the promoter regions of the expressed genes
[22,23] suggests the combinatorial activity of a small number of transcription factors
are responsible for a complex set of expression patterns under diverse conditions [23].
Our demonstration of a continuum hierarchy of transcriptional regulatory relationships
with a seemingly conserved but malleable transcriptional output is compatible with this
type of regulation.
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