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The observable behavior of a complex system reflects the mechanisms governing the internal
interactions between the system’s components and the effect of external perturbations. Here we show
that by capturing the simultaneous activity of several of the system’s components we can separate the
internal dynamics from the external fluctuations. The method allows us to systematically determine the
origin of fluctuations in various real systems, finding that while the Internet and the computer chip have
robust internal dynamics, highway and Web traffic are driven by external demand. As multichannel
measurements are becoming the norm in most fields, the method could help uncover the collective
dynamics of a wide array of complex systems.
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Decades of research has lead to the development of
sophisticated tools to analyze time series generated by
various dynamical systems, allowing us to extract short
and long range temporal correlations, periodic patterns,
and stationarity information [1–4]. We lack, however,
systematic methods to extract from multiple data sets
information not already provided by a single time series.
Indeed, advances in computer aided measurement tech-
niques increasingly offer the possibility to separately but
simultaneously record the time dependent activity of a
system’s many components, such as information flow on
thousands of Internet routers or highway traffic on nu-
merous highways. As the time dependent activity of each
component (router or highway) captures the system’s
dynamics from a different angle, these parallel time
series offer us increasingly complete information about
the system’s collective behavior. Yet, we have difficulty
answering a simple question: How can we uncover from
multiple time series a system’s internal dynamics?

Multiple time series are typically available for complex
systems whose dynamics is determined by the interaction
of a large number of components that communicate with
each other through some complex network [5]. The dy-
namics of each component is determined by two factors:
(i) interactions between the components, governed by
some internal dynamical rules that distribute the activity
between the various parts of the system and (ii) global
variations in the overall activity of the system. For ex-
ample, the traffic increase on highways during peak
hours and surges in the number of Internet users during
working hours represent global activity changes that have
a strong impact on the local activity of each component
(highway or router) as well. Different components are
influenced to a different degree by these global changes,
making it impossible for an observer that has access only
to a single component to separate the internal dynamics
from the externally imposed fluctuations. Most impor-
tant, the inevitable fluctuations in the external conditions
systematically obscure the mechanisms that govern the
system’s internal dynamics.
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Here we propose a method to separate in a systematic
manner for each time series the external from the internal
contributions, and validate it on model systems, for which
the magnitude of the external perturbations can be ex-
plicitly controlled. By removing the impact of the exter-
nal changes on the system’s activity we gain insights into
the internal dynamics of a wide range of systems, from
Internet traffic to bit flow on a microprocessor.

Let us consider a dynamical system for which we can
record the time dependent activity of N components,
allowing us to assign to each component i a time series
ffi�t�g, t � 1; . . . ; T and i � 1; . . . ; N. As each time series
reflects the joint contribution from the system’s internal
dynamics and external fluctuations, we assume that we
can separate the two contributions by writing

fi�t� � finti �t� � fexti �t�: (1)

To determine fexti �t� let us consider the case when
internal fluctuations are absent, and therefore the total
traffic in the system is distributed in a deterministic
fashion among all components. In this case, component
i captures a time independent fraction Ai of the total
traffic. For different components i, Ai can differ signifi-
cantly, being determined by the component’s centrality
[6]. The challenge is to extract Ai from the experimentally
available data without knowledge of the system’s internal
topology or the dynamical rules governing its activity.
For this we write Ai as the ratio of the total traffic going
through the component i in the time interval t 2 �0; T	
and the total traffic going over all observed components
during the same time interval

Ai �

PT
t�1 fi�t�PT

t�1

PN
i�1 fi�t�

: (2)

At any moment t the amount of traffic expected to go
through node i is therefore given by the product of Ai and
the total traffic in the system in moment t, providing the
magnitude of the traffic expected if only external fluctu-
ations contribute to the activity of node i as
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FIG. 1. Splitting a measured signal into its external and
internal contributions for the model system. We study the traffic
on the nodes of a scale-free network with 103 nodes, generated
by M�t� random walkers whose number follow a sinusoidal
signal with amplitude 
M and period 60. (a) The activity
measured on a typical node when the amplitude of the external
fluctuations is 
M � 1000. (b) The external contribution pro-
vided by Eq. (3) recovers the periodic signal imposed on the
system. (c) The internal contribution, predicted by Eq. (4), cap-
tures the random pattern of the diffusion process. (d)–(f) The
same as in (a)–(c) but with a small external amplitude 
M �
10, demonstrating that the method works even when the am-
plitude of external fluctuations are comparable to fluctuations
of the internal dynamics.
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fexti �t� � Ai

XN
i�1

fi�t�: (3)

Equation (3) describes the case in which changes in the
system’s overall activity are reflected in a proportional
fashion on each component. Real systems do display,
however, internal fluctuations, which will generate local
and temporal deviations from the expected fexti �t�, a con-
sequence of the internal time dependent redistribution of
traffic in the system. Using (1)–(3) we obtain this internal
component as

finti �t� � fi�t� 

� PT

t�1 fi�t�PT
t�1

PN
i�1 fi�t�

�XN
i�1

fi�t�; (4)

which, by definition, has zero average, as it captures the
deviations from the traffic expected to go through com-
ponent i. Given the experimentally measured dynamic
signal fi�t� on a large number of components, (3) and (4)
allow us to separate each signal fi�t� into two contribu-
tions, fexti �t� and finti �t�	, the first capturing changes in the
system’s overall activity, providing a measure of the ex-
ternal fluctuations, and the second describing the fluctua-
tions characterizing the system’s internal dynamics.

To test the ability of (3) and (4) to separate the internal
and external components of a time series we investigate a
simple model system of random walkers on a network [7].
We randomly displace M noninteracting walkers on the
network, allowing each to perform Ns steps and monitor
the total number of visitations fi for each node i. If we
repeat the experiment T times, we find that the number of
visits to node i differs from one experiment to the other,
the time series ffi�t�g, t � 1; . . . ; T characterizing the
fluctuations intrinsic to the diffusion process. If, however,
we allow the number of walkers M�t� to vary from one
experiment to the other, the local variations in fi�t� are
rooted not only in the random character of diffusion but
also in variations imposed by changes in the total activity
M�t�. An observer that records only a single fi�t� time
series has difficulty deciding if the measured fluctuations
reflect the system’s internal dynamics only or some non-
stationary external effect. To test the method’s ability to
separate the internal and external fluctuations we use an
external signal with an easily recognizable periodic pro-
file M�t� � hMi � 
M sin�kt�. Figures 1(a) and 1(d) show
the activity fi�t� recorded for a typical node for two
different 
M amplitudes, representing a visible super-
position of the sinusoidal external signal and the internal
randomness of the diffusion process. As Figs. 1(b) and
1(e) show, the external component provided by (3) fully
recovers the external signal imposed on the system. After
removing the external component using Eq. (4) we obtain
a random pattern reflecting the intrinsic fluctuations of
the diffusion process. The method works equally well in
the case when the magnitude of the external fluctuations
is large [Fig. 1(a)] or small [Fig. 1(d)] compared to the
system’s internal fluctuations [8].
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We can use (3) and (4) to determine if the fluc-
tuations observed in a system are mainly internally
or externally imposed. For each recorded signal i
we determine the external and internal standard

deviations, ext
i �

������������������������������������������
hfexti �t�2i 
 hfexti �t�i2

q
and int

i ������������������������������������������
hfinti �t�2i 
 hfinti �t�i2

q
, and their ratio

�i �
ext

i

int
i

: (5)

When �i  1, the external fluctuations dominate the
dynamics of component i, while for �i � 1 the system’s
internal dynamics dominates over the externally imposed
changes. As different signals have different �i values,
the system’s overall behavior is best characterized by the
P��i� distribution, obtained after calculating �i for each
signal we have access to. Figures 2(a) and 2(b) show P��i�
for the random walk model, in which the number of
walkers follows M�t� � hMi � �i�t�, where �i�t� is a ran-
dom variable uniformly distributed between 

M=2 and

M=2. For small external fluctuations (
M ’ 0), the
P��i� distribution is highly peaked and is located entirely
in the �i � 1 region, indicating that external fluctuations
have little influence on the dynamics of the individual
components. For high 
M, however, P��i� lies in the
068701-2
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FIG. 3. Scaling of the external and internal fluctuations with
the average flux. Internal fluctuations int

i on the microchip (a)
and on the Internet (b), both belonging to the � � 1=2 class,
are significantly larger than external fluctuations ext

i and scale
with a different exponent. External and internal fluctuations
are comparable in magnitude on the World Wide Web (c) and
the highway network (d), and they also follow the same
scaling, indicating that in these systems’ external fluctuations
should have strong impact on systems’ overall dynamics.
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FIG. 2 (color online). Distribution of �i � ext
i =int

i ratios of
external and internal fluctuations for model (a),(b) and selected
real systems (c),(d). Distribution of the �i ratios for the random
walk model: (a) For smaller external fluctuations, the distribu-
tion is centered around a small value of � � 1, indicating that
internal fluctuations overcome external ones, dominating the
system’s dynamics. (b) When 
M is increased, however, such
fluctuations overshadow the system’s internal dynamics, and
the P��� distribution shifts towards larger values of �. (c) P���
distributions for the Internet and the microchip, centered
around �� 0:1, indicate that external fluctuations do not affect
the system’s overall dynamics significantly. (d) The World Wide
Web and the highway networks, with P��� peaked around ��
1, are strongly influenced by fluctuations in the total number of
web surfers and the number of cars, respectively.
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� * 1 region, indicating that the system’s dynamics is
dominated by external fluctuations.

Our ability to split the time series into an internal and
external signal offers novel insights into the dynamics of
four systems of major technological importance: Internet
routers [9], a microchip [10], the World Wide Web
(WWW) [11], and the highway system of Colorado. We
collected time resolved information about the activity of
a large number of components, such as traffic on 374
Internet routers, switching behavior of 462 gates of a
microchip, the daily visitations of 3000 web sites on the
Web, and the daily traffic for 127 highways in Colorado
(details about the databases are provided in Ref. [7]). We
used (1)–(4) to separate the signal for each component i,
the corresponding P��� distribution unraveling clear dif-
ferences between the studied systems. We find that for the
Internet and the microchip internal fluctuations dominate
over the externally induced changes, as the P��� distri-
bution lies in the � � 1 region, peaked around � ’ 0:08
[Fig. 2(c)]. On the other hand, for theWorld WideWeb and
highways the typical � ratios are an order of magnitude
larger [Fig. 2(d)], the P��� distribution being peaked at
� ’ 1, indicating that for these two systems the external
and internal fluctuations are comparable in magnitude.

This separation correlates with the finding that the four
studied systems belong to two distinct universality
classes [7]. Indeed, for each recorded signal the time
068701-3
average hfii and the standard deviation i obey the scal-
ing law i � hfii�, where for the microchip and the
Internet � � 1=2, while for the highways and the
WWW � � 1. Figure 2 indicates that � correlates with
the relative magnitude of the external fluctuations [7]: for
systems with � � 1=2 the internal fluctuations dominate
[Fig. 2(c)], while for systems with � � 1 the impact of
the external fluctuations is at least comparable to the
fluctuations generated by the system’s internal dynamics
[Fig. 2(d)].

The P��� distribution tells us only the origins of the
fluctuations and is not sufficient to understand the inti-
mate differences between the internal and the external
contributions. A more detailed understanding is provided
by plotting for each signal i the ext

i and the int
i standard

deviations in function of the average hfii [Figs. 3(a)–
3(d)]. We find that for the microchip and the Internet
ext

i and int
i scale with different exponents [Figs. 3(a)

and 3(b)]: the internal fluctuations scale with � � 1=2,
while the external signal scales with � � 1 (which is an
expected feature of the external fluctuations [7]).
Furthermore, for these two systems the internal standard
deviation is much larger than the external one
[int

i �hfii�  ext
i �hfii�], explaining why the overall �

hfi� scaling captures only the � � 1=2 exponent. In
contrast, for the WWW and the highways the ext

i and
int

i curves overlap, both following the � � 1 exponent
[Figs. 3(c) and 3(d)].

The qualitative difference between the two sets of plots
in Fig. 3 reflects fundamental differences in the internal
dynamics of the four studied real systems. The splitting of
the curves seen in Figs. 3(a) and 3(b) indicates that the
068701-3
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Internet and microchip are characterized by a robust
internal dynamics, which leads to a dominating � �
1=2 internal scaling. While the � � 1=2 exponent
emerges in the studied diffusion model as well [7], the
nature of the internal dynamics and the origin of the 1=2
exponent needs to be addressed in each system separately.
In contrast, the overlapping curves seen in Figs. 3(c) and
3(d) indicate not only that highway and WWW traffic are
much more susceptible to external perturbations but also
suggest that these systems do not have a clearly separable
internal dynamics. That is, the local activity of the system
is driven simply by global demand, and the interactions
between the various highways or web sites do not lead to a
distinguishable internal dynamics. Indeed, while on the
microchip and on the Internet there are strict protocols
regulating the traffic of bits or packages, highways and
the WWW allow for a much higher flexibility, the users
having the option to leave the system each time they
encounter unfavorable local conditions, such as highway
congestion or Web delays. Yet, highway and Internet traf-
fic in many ways are quite similar [12,13], each describ-
ing a clear source-destination shortest-path traffic. Thus,
the fundamental difference in their internal dynamics is
in many ways surprising and warrants further inquiry.

Our simulations indicate that a nonstationary external
noise does not affect the method’s applicability, as the
nonstationary behavior will be carried by the external
component of the separated signal. However, it is unclear
if the method could be applied if there is internal non-
stationarity in the system, corresponding to time depen-
dent shifts in the system’s overall activity between groups
of nodes. Such internal nonstationarity can be uncovered
by calculating the Ai parameters in nonoverlapping time
windows [14], potentially resulting in significant lasting
shifts in the Ai values. An inspection of the four studied
systems did not reveal nonstationary internal behavior,
the Ai parameter fluctuating around hAii. The method
appears to be insensitive to the choice of the observational
window T used in Eq. (2), as long as T is large enough so
that the average can be evaluated.

In an increasing number of complex systems one can
experimentally monitor the simultaneous activity of hun-
dreds of channels, examples including multichannel mea-
surement of neural activity on in vivo cell colonies [15],
simultaneous monitoring of thousands of gene expression
data sets for model organisms such as E. Coli or S.
Cerevisae [16], flow fluctuation in river networks [3,17],
price variations in individual stocks or goods [18], or the
activity of different processors in parallel computation
[19]. The method introduced here represents a systematic
tool for extracting information from multiple channel
measurements, offering detailed insights into the mecha-
nisms that govern the dynamics of these systems.

We are indebted to Jay Brockman and Paul Balensiefer
for providing data on the computer chip and to János
Kertész for fruitful discussions. This research was sup-
ported by grants from NSF, NIH, and DOE.
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