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Abstract. – For many externally driven complex systems neither the noisy driving force,
nor the internal dynamics are a priori known. Here we focus on systems for which the time-
dependent activity of a large number of components can be monitored, allowing us to separate
each signal into a component attributed to the external driving force and one to the internal
dynamics. We propose a formalism to capture the potential multiscaling in the fluctuations and
apply it to the high-frequency trading records of the New York Stock Exchange. We find that
on the time scale of minutes the dynamics is governed by internal processes, while on a daily or
longer scale the external factors dominate. This transition from internal to external dynamics
induces systematic changes in the scaling exponents, offering direct evidence of non-universality
in the system.

While it is hard to find a generally accepted definition of complex systems, most systems
that are colloquially labeled “complex” include a large number of interacting constituents (or
nodes) whose collective dynamics leads to emergent spatial and/or temporal structures [1].
The most studied examples that fit this paradigm include the cell, vehicular traffic or the
World Wide Web [2]. Very often these systems operate far from equilibrium and under the
influence of an external driving force. Yet, typically the mechanisms governing the internal
dynamics of these systems are not a priori known and even the driving force is not necessarily
under the observer’s control. Moreover, the separation of the system from its environment is
often arbitrary, making it difficult to systematically distinguish the internal from the external
degrees of freedom.

With the improvement of the measurement and information processing tools an increasing
number of systems can be monitored through multichannel measurements, offering the pos-
sibility to record and characterize the simultaneous time-dependent behavior of many of the
system’s constituents. These advances in observational techniques offer an important scien-
tific challenge: Can we design systematic methods that, taking advantage of the new datasets,
can help us to map out the interactions and the dynamics of various complex systems? Con-
sidering the large number of constituents and the complexity of the behavior displayed by
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them, the above task is a truly ambitious undertaking, thus even partial progress is of major
potential significance.

Concepts like scaling, multiscaling and universality [3] have been found extremely useful
in the characterization of complex phenomena, as they offer general relationships, leading to
organizing and systematic categorization principles. Indeed, recent measurements focusing on
the fluctuations at the “nodes” of several complex systems [4] indicate that the relationship
between the standard deviation σi and time average 〈fi〉 of the fi(t) signal capturing the
time-dependent activity of node i = 1, . . . , N follows the scaling law

σ ∝ 〈f〉α. (1)

Yet, this finding leaves a number of important questions unanswered. Measurements indicate
that real systems belong to one of the two extreme universality classes. One of them is α ≈ 1/2,
which describes systems where endogenous factors dominate dynamics. This was observed for
a computer chip and the hardware-level Internet (a network of data flow). The other case
is α ≈ 1, which is a fingerprint of an exogenous dominance in the fluctuations, i.e. systems
driven by external load or demand. This was found for highway traffic, river networks and the
World Wide Web of web pages and links. It is a curious fact that the Internet and the WWW
—two aspects of seemingly the same system— fall into different categories. The key lies in the
fact that the WWW is mainly driven by users: pages are accessed when these users, acting
as external forces, generate page hits. On the other hand, Internet data flow has a robust
internal activity, even without human interaction, due to automatic protocols, demons, etc.

Universality in statistical physics is more than mere numerical agreement of exponents:
In critical phenomena [5] whole scaling functions are expected to be universal. A natural
question in this context: Are the distributions of the fluctuations characterized by universal
scaling functions? In this sense a signature of non-universality would be if some systems
showed multifractality while others did not. Indeed, in the systems mentioned as examples
above multiscaling appeared to be absent [6]. A major goal of this paper is to introduce
the computational tools to uncover potential multiscaling in real systems. Finally, we apply
these tools to the stock market, offering direct evidence of both non-universal exponents
and multiscaling.

To capture the dynamics of systems that can be monitored through several channels, we
decompose the signals into two components, that we will call the external and the internal
activity/noise [7]. For this we define the system’s global activity F (t) as a sum over the activity
of all elements

F (t) =
∑

i

fi(t). (2)

As F (t) characterizes the common trends in the systems’s activity, in (2) the individual, in-
dependent fluctuations of the components are averaged out. The components are expected
to follow this “external” or averaged trend (which itself may be noisy), while the fluctuations
around F (t) are of “internal” origin, driven by the individual behavior of the system’s compo-
nents and their interactions. For a wide variety of cases the total activity fi(t) of node i can
be split into an external activity, representing node i’s expected share of the global activity
F (t), defined as

f ext
i (t) =

〈fi〉
〈F 〉F (t), (3)

and the deviations or internal activity is given by

f int
i (t) = fi(t)− 〈fi〉

〈F 〉F (t). (4)
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〈·〉 denotes temporal average [8], while (4) the fluctuating component of a node’s activity.
By definition, 〈f int

i 〉 = 0. However, (3) contains the expected changes in the node’s activity,
given the overall changes in the system’s activity. If the system is closed, then F (t) is time
independent. Thus there are no changes in the external component f

(ext)
i (t) either.

The standard deviation σ
(�)
i of the activity of the i-th component is

σ
(�)
i =

√〈(
f

(�)
i −

〈
f

(�)
i

〉)2
〉

, (5)

where the label (�) represents tot, int or ext, indicating that σi is calculated from the total,
internal or external signal, respectively. We will omit (�) for the total case where appropriate.

In order to investigate the multiscaling behavior of the fluctuations of various types of
noise we propose the multiscaling relation for the total noise:

〈|fi − 〈fi〉|q〉 = Cq
F (∆t, q) 〈fi〉qα(q)

. (6)

Similar definitions can be given for any type (�) of activity. This means that all q-th–order
central moments of any (int, ext, tot) activity, which characterize fluctuations around the
mean behavior, scale as power laws with the mean total activity of the same element. In
this notation, the α of (1) corresponds to α(q = 2). In (6) α(q) is a formal analogue to the
generalized dimensions H(q) for multifractal or multiaffine time series [10], defined as

〈|fi − 〈fi〉|q〉 = Cq
T (i, q)∆tqH(i,q), (7)

where ∆t is the time above which the averages are to be taken. Note that CF , CT , α and
H may also depend on the noise type (�). In particular, as 〈|f (ext)

i |q〉 ≡ 〈fi〉q, for external
activity we always have α(q) ≡ 1 (see (3)), indicating that multiscaling can be present only
in the internal or total fluctuations.

Combining (6) and (7) one can eliminate a variable:

〈
f

(tot)
i

〉α(∆t,q)

〈
f

(tot)
i

〉α(∆t,q′)H(i,q)/H(i,q′)

CF (∆t, q)
CF (∆t, q′)H(i,q)/H(i,q′) =

CT (i, q)
CT (i, q′)H(i,q)/H(i,q′) . (8)

Here the r.h.s. does not depend on ∆t, thus the l.h.s. should not either. Information on
the temporal scaling goes into the r.h.s. in form of the exponent ratios H(q)/H(q′). However,
if the time series does not show multifractality, i.e., H(q) = H(q′), then the simple moment
ratios from (6) should not depend on the averaging time.

Let us turn to an example where the tools introduced above prove useful. In the study of
the financial market as a complex system, statistical physics concepts turned out to be very
powerful [11]. Enormous amount of data is available as every transaction is recorded on the
stock market. A natural choice of constituents here are the stocks of firms that are publicly
traded. In order to keep the analogy with previously studied cases we have chosen the flow
as the signals. On a given time horizon ∆t, let the (total) activity or flow of the i-th stock at
time t be

f∆t
i (t) =

∑
τ∈[t,t+∆t]

Yi(τ)Vi(τ), (9)

where τ runs for all trades of the i-th stock in the given interval. This corresponds to the
coarse-graining of the individual events, or the so-called tick-by-tick data. Yi(τ) is the price
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Fig. 1 – Scaling of q = 2 central moments of activities and fitted linear trends. (a) ∆t = 10 minutes.
α(2; tot) ≈ α(2; int) = 0.773 ± 0.003. (b) ∆t = 390 minutes = 1 trading day. α(2; tot) ≈ α(2; int) =
0.885 ± 0.005. Errors are estimated from the linear fit on the log-log plot. Note that, although the
errors are very low due to the large number of data points, there is pronounced unexplained variance
around the expected scaling of total and internal noise. This can be reduced significantly if one takes
the system structure (in our case the clustering of stocks into market sectors) into account [9].

and Vi(τ) is the traded volume for the trade at time τ [12]. We used data with a minute
resolution where the price within the minute was that of the last trading minute (which
causes a negligible error). Hence, f∆t

i (t) gives the total traded value of stock i between times
t and t + ∆t. ∆t can be chosen as any multiple of 1 minute, and t = 0,∆t, 2∆t, . . . . In
the following for simplicity of notation we will omit ∆t’s where they are kept constant, only
indicating their value once.

For empirical analysis we used the TAQ database [13] of the New York Stock Exchange
for the period of 2000-2002, which after some filtering [14] contains N = 2200 stocks.

The α(q) scaling exponents were measured for fixed ∆t, examples being shown in fig. 1.
The first striking observation is that for the second moment we find power law behavior over
five orders of magnitude, but with an exponent which is significantly different from both
universality classes 1/2 and 1. Second, we find multiscaling (i.e., a dependence of α(q) on q,
except for the trivial case of external activity), as shown in fig. 2. And third, the exponents
show a strong dependence on the time horizon ∆t. These three results are in contrast with
previous findings [4] and have not been observed before.

In the activity (9) there are two sources of external impact, a random and a regular
part. The latter is manifest in, e.g., different kinds of seasonalities and intraday patterns.

Fig. 2 – The α(q) multiscaling exponents for all three types of activity. α(q; ext) ≡ 1. (a) ∆t = 10
minutes. (b) ∆t = 390 minutes = 1 trading day.
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Fig. 3 – The intraday pattern of trading activity, which is calculated as the average of the individual
daily time series. The activity during one example day is given for comparison.

Since we are interested in the fluctuations it is natural to detrend the data from such regular
contributions. In this respect intraday patterns are particularly strong [11]: At the beginning
and end of the trading day the activity is anomalously high. In addition, one finds a small
irregularity in activity right after 10 a.m., which is a typical time for news arrival. The pattern,
averaged for all full-length days in our dataset (shown in fig. 3) is used for detrending. This
is achieved by dividing traded values by the respective values of the trend pattern.

We measured the scaling exponents α, using fits similar to those in fig. 1. Simultaneously,
we calculated the noise ratio η = σext/σint averaged over all stocks. This directly measures the
relative strength of externally imposed dynamics. Both α and η are shown in fig. 4, displaying
a significant ∆t-dependence. One finds that, as moving from the minute scale to the weekly
scale, the nature of fluctuations changes gradually toward the externally driven limit. This
is in correspondence with results for the η ratio (see fig. 4(b)). Detrending causes a little
systematic decrease in α values for time horizons less than one day.

An anomalous non-monotonicity is present in the raw data (see fig. 4(b)). This is due to
the rise in activity at the beginnings and ends of days. These cause enhanced fluctuations on
time scales ∆t < 1 day as shown in fig. 5. For the detrended data, we recover the expected

Fig. 4 – (a) Values of α as a function of the time scale ∆t. There is a clear tendency present. The
exponent grows from a lower value corresponding to the dominance of internal dynamics to nearly 1,
which characterizes externally driven systems. (b) The ratio η = σext/σint of the standard deviation of
fluctuations originating from external and internal sources. Raw data shows an anomalous behavior,
the result of peaks in trading activity at the beginning and the end of each day of trading. Results
for data detrended with the average of this daily pattern show an effect similar to the one in the
behavior of the exponent α. In the ∆t = 1–390 minutes = 1 day interval, there is a faster increase in
the contribution of external fluctuations. Beyond the scale of a few days this tendency saturates.
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Fig. 5 – Histogram of the ratios of the internal and external standard deviations for all stocks, both
for raw and detrended time series. The comparison shows that external influence is stronger on a
daily time scale than for fine resolution data. (a) ∆t = 10 minutes. Detrending with the intraday
pattern removes the spurious external driving force due to daily peaks in activity. This decreases the
measured external contribution in fluctuations. (b) ∆t = 390 minutes = 1 trading day. Detrending
does not change behavior measured on a daily (or longer) scale.

tendency: As ∆t increases, the external driving force gets stronger. The range of η is similar
to that in [4]. We find, that for ∆t’s larger than a few days, the external contribution to
fluctuations saturates.

As we change the time scales (∆t = 1 minute–2 weeks) we observe a transition between two
limits. With decreasing ∆t, we get closer to the limiting endogenous behavior α = αint < 1,
and η 	 1. Yet, fig. 4(a) indicates that even the limiting value α∗

int should significantly differ
from 1/2 measured in several systems [4,15]. This suggests that despite earlier observations [4]
the behavior α∗

int = 1/2 is not universal, although the mechanism responsible for this non-
trivial scaling is unknown. Furthermore, we observe a continuous dependence of the exponent
αint on ∆t with scaling spanning over five orders of magnitude, indicating that the observed
exponents are likely not due to finite-size crossover phenomena. With increasing ∆t there is
a growing role of external forces, and beyond the daily scale we reach the exogenous limit,
where α → 1 and η ∼ 0.20. In this limit the dynamics is dominated by the external driving
force. This mechanism is behind the so-called Epps-effect [16], namely that in high-frequency
data the cross-correlations between stocks are much less pronounced than in, say, daily ones:
Correlations reflect the similarities in how different stocks react to external effects and this is
covered for short time horizons by noisy internal dynamics.

These results offer a coherent qualitative picture about market dynamics. The impact of
incoming news needs a finite time to diffuse. Hence, on short time scales, the response to
them is small. The factor that determines the fluctuations of trading activity is internal: it
is the trading mechanism itself. On daily or longer scales, however, the internal fluctuations
have smaller importance, and the market tends to move with the global activity. In periods
of “business as usual”, the natural human scale of one day seems to be needed to reach a
kind of coherence: News and trends can be evaluated, information is exchanged and collective
decisions are made. Interestingly, the scaling of asset return distributions [11] also breaks
down on the scale of one day, see, e.g., [17].

Distinguishing between endogenous and exogenous origins of market events is a central
research problem [18]. Though theoretically and in agent-based model calculations it has been
possible to investigate this question, its empirical study is extremely difficult. The appealing
feature of the presented method is that it is based purely on multichannel time series and
no knowledge of the internal structure or the dynamics goes into it. Thus it can serve as an
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empirical foundation for simulations and further theoretical work. Clearly, its applicability
goes much beyond the examples discussed so far.

In summary, we have introduced a multiscaling formalism to study fluctuations in complex
systems. We find that non-universal behavior is manifested not only in α exponents different
from the universal values 1/2 and 1 but also in the scaling properties of the distribution
functions. The α exponents found for the flow data of 2200 stocks on the NYSE showed
a continuous dependence on the time horizon with good-quality scaling over five orders of
magnitude. An additional signature of non-universal behavior is that multiscaling was found,
in contrast to several other complex systems investigated in the similar fashion [6].
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