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Quantifying social group evolution
Gergely Palla1, Albert-László Barabási2 & Tamás Vicsek1,3

The rich set of interactions between individuals in society1–7

results in complex community structure, capturing highly con-
nected circles of friends, families or professional cliques in a social
network3,7–10. Thanks to frequent changes in the activity and com-
munication patterns of individuals, the associated social and com-
munication network is subject to constant evolution7,11–16. Our
knowledge of the mechanisms governing the underlying commun-
ity dynamics is limited, but is essential for a deeper understanding
of the development and self-optimization of society as a whole17–22.
We have developed an algorithm based on clique percolation23,24

that allows us to investigate the time dependence of overlapping
communities on a large scale, and thus uncover basic relationships
characterizing community evolution. Our focus is on networks
capturing the collaboration between scientists and the calls be-
tween mobile phone users. We find that large groups persist for
longer if they are capable of dynamically altering their member-
ship, suggesting that an ability to change the group composition
results in better adaptability. The behaviour of small groups dis-
plays the opposite tendency—the condition for stability is that
their composition remains unchanged. We also show that know-
ledge of the time commitment of members to a given community
can be used for estimating the community’s lifetime. These find-
ings offer insight into the fundamental differences between the
dynamics of small groups and large institutions.

The data sets we consider are (1) the monthly list of articles in the
Cornell University Library e-print condensed matter (cond-mat)
archive spanning 142 months, with over 30,000 authors25, and (2)
the record of phone calls between the customers of a mobile phone
company spanning 52 weeks (accumulated over two-week-long per-
iods), and containing the communication patterns of over 4 million
users. Both types of collaboration events (a new article or a phone
call) document the presence of social interaction between the
involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from
the primary data is described in Supplementary Information. In
Fig. 1a, b we show the local structure at a given time step in the
two networks in the vicinity of a randomly chosen individual
(marked by a red frame). The communities (social groups repre-
sented by more densely interconnected parts within a network of
social links) are colour coded, so that black nodes/edges do not
belong to any community, and those that simultaneously belong to
two or more communities are shown in red.

The two networks have rather different local structure: the collab-
oration network of scientists emerges as a one-mode projection of the
bipartite graph between authors and papers, so it is quite dense and
the overlap between communities is very significant. In contrast, in the
phone-call network the communities are less interconnected and are
often separated by one or more inter-community nodes/edges. Indeed,
whereas the phone record captures the communication between two
people, the publication record assigns to all individuals that contribute
to a paper a fully connected clique. As a result, the phone data are

dominated by single links, whereas the co-authorship data have many
dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, cap-
turing a relationship as it happens. In contrast, the co-authorship data
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Figure 1 | Structure and schematic dynamics of the two networks
considered. a, The co-authorship network. The figure shows the local
community structure at a given time step in the vicinity of a randomly selected
node. b, As a but for the phone-call network. c, The filled black symbols
correspond to the average size of the largest subset of members with the same
zip-code, Ænrealæ, in the phone-call communities divided by the same quantity
found in random sets, Ænrandæ, as a function of the community size, s. Similarly,
the open symbols show the average size of the largest subset of community
members with an age falling in a three-year time window, divided by the same
quantity in random sets. The error bars in both cases correspond to Ænrealæ/
(Ænrandæ 1 srand) and Ænrealæ/(Ænrandæ 2 srand), where srand is the standard
deviation in the case of the random sets. d, The Ænrealæ/s as a function of s, for
both the zip-code (filled black symbols) and the age (open symbols). e, Possible
events in community evolution. f, The identification of evolving communities.
The links at t (blue) and the links at t 1 1 (yellow) are merged into a joint graph
(green). Any CPM community at t or t 1 1 is part of a CPM community in the
joined graph, so these can be used to match the two sets of communities.
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record the results of a long-term collaboration process. These fun-
damental differences suggest that any common features of the com-
munity evolution in the two networks represent potentially generic
characteristics of community formation, rather than being rooted in
the details of the network representation or data collection process.

The communities at each time step were extracted using the clique
percolation method23,24 (CPM). The key features of the communities
obtained by the CPM are that their members can be reached through
well connected subsets of nodes, and that the communities may
overlap (share nodes with each other). This latter property is essen-
tial, as most networks are characterized by overlapping and nested
communities6,23. As a first step, it is important to check if the uncov-
ered communities correspond to groups of individuals with a shared
common activity pattern. For this purpose, we compared the average
weight of the links inside communities, wc, to the average weight
of the inter-community links, wic. For the co-authorship network
wc/wic is about 2.9, whereas for the phone-call network the difference
is even more significant, as wc/wic < 5.9, indicating that the intensity
of collaboration/communication within a group is significantly higher
than with contacts belonging to a different group26–28. Although for
co-authors the quality of the clustering can be directly tested by study-
ing their publication records in more detail, in the phone-call network
personal information is not available. In this case the zip-code and
the age of the users provide additional information for checking the
homogeneity of the communities. According to Fig. 1c, the Ænrealæ/
Ænrandæ ratio is significantly larger than 1 for both the zip-code and the
age, indicating that communities have a tendency to contain people
from the same generation and living in the same neighbourhood
(Ænrealæ is the size of the largest subset of people having the same zip-
code averaged over time steps and the set of available communities,
while Ænrandæ represents the same average but with randomly selected
users). It is of specific interest that Ænrealæ/Ænrandæ for the zip-code has a
prominent peak at community size s < 35, suggesting that commu-
nities of this size are geographically the most homogeneous ones.
However, as Fig. 1d shows, the situation is more complex: on aver-
age, the smaller communities are more homogeneous in respect of
both the zip-code and the age, but there is still a noticeable peak at
s < 30–35 for the zip-code. In summary, the phone-call communities
uncovered by the CPM tend to contain individuals living in the same

neighbourhood, and having a comparable age, a homogeneity that
supports the validity of the uncovered community structure. Further
support is given in Supplementary Information.

The basic events that may occur in the life of a community are
shown in Fig. 1e: a community can grow or contract; groups may
merge or split; new communities are born while others may disappear.
We have developed a method for the appropriate matching (between
the subsequent states of the evolving communities) from the informa-
tion available for relatively distant points in time only (see Methods).

After determining the dynamically changing community struc-
ture, we first consider two basic quantities characterizing a commun-
ity: its size s and its age t, representing the time passed since its birth.
The quantities s and t are positively correlated: larger communities
are on average older (Fig. 2a). Next we used the auto-correlation
function, C(t), to quantify the relative overlap between two states
of the same community A(t) at t time steps apart:

C(t):
A(t0)\A(t0zt)j j
A(t0)|A(t0zt)j j ð1Þ

where A(t0)\A(t0zt)j j is the number of common nodes (members)
in A(t0) and A(t0 1 t), and A(t0)|A(t0zt)j j is the number of nodes
in the union of A(t0) and A(t0 1 t). Figure 2b shows the average time
dependent auto-correlation function for communities born with dif-
ferent sizes. The data indicate that the collaboration network is more
‘dynamic’ (ÆC(t)æ decays faster). We also find that in both networks,
the auto-correlation function decays faster for the larger communit-
ies, showing that the membership of the larger communities is chan-
ging at a higher rate. In contrast, small communities change at a
smaller rate, their composition being more or less static. To quantify
this aspect of community evolution, we define the stationarity f of a
community as the average correlation between subsequent states:

f:

Ptmax{1

t~t0

C(t ,tz1)

tmax{t0{1
ð2Þ

where t0 denotes the birth of the community, and tmax is the last step
before the extinction of the community. Thus, 1 2 f represents the
average ratio of members changed in one step.
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Figure 2 | Characteristic features of community evolution. a, The age t of
communities with a given size (number of people) s, averaged over the set of
available communities and the time steps, divided by the average age of all
communities, Ætæ, as a function of s. The increasing nature of the plot
indicates that larger communities are on average older. b, The auto-
correlation function C(t) of communities with different sizes averaged over
the communities and t0.The unit of time, t, is two weeks, thus, for the co-
authorship network, where the data samples were taken monthly, the C(t)

values are shown for every other time step. c, The life-span t* averaged over
the communities as a function of the stationarity f and the community size s
for the co-authorship network. (The communities still living at the last
available time step in the data set were excluded from this investigation.) The
peak in Æt*æ is close to f 5 1 for small sizes, whereas it is shifted towards lower
f values for large sizes. d, Similar results found in the phone-call network. In
c and d, the white line corresponds to the optimal stationarity.
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We observe an interesting effect when investigating the relation-
ship between the lifetime t* (the number of steps between the birth
and the disintegration of a community), the stationarity and the
community size. The lifetime can be viewed as a simple measure of
‘fitness’: communities having higher fitness have an extended life,
whereas the ones with small fitness quickly disintegrate. In Fig. 2c,
d we show the average life-span Æt*æ (colour coded) as a function of
the stationarity f and the community size s (both s and f were
binned). In both networks, for small community sizes the highest
average life-span is at a stationarity value very close to one, indicating

that for small communities it is optimal to have static, time-
independent membership. On the other hand, the peak in Æt*æ is
shifted towards low f values for large communities, suggesting that
for these the optimal regime is to be dynamic, that is, to have a
continually changing membership.

To illustrate the difference in the optimal behaviour (a pattern of
membership dynamics leading to extended lifetime) of small and
large communities, in Fig. 3 we show the time evolution of four
communities from the co-authorship network. As Fig. 3 indicates,
a typical small and stationary community undergoes minor changes,
but lives for a long time. This is well illustrated by the snapshots of
the community structure, showing that the community’s stability is
conferred by a core of three individuals representing a collaborative
group spanning over 52 months. In contrast, a small community with
high turnover of its members has a lifetime of nine time steps only
(Fig. 3b). The opposite is seen for large communities: a large sta-
tionary community disintegrates after four time steps (Fig. 3c). In
contrast, a large non-stationary community whose members change
dynamically, resulting in significant fluctuations in both size and
composition, has a quite extended lifetime (Fig. 3d).

The different stability rules followed by the small and large
communities raise an important question: could the inspection of
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Figure 3 | Evolution of four types of communities in the co-authorship
network. The height of the columns corresponds to the actual community
size, s, and within one column the yellow colour indicates the number of ‘old’
nodes (that have been present in the community at least in the previous time
step as well), while newcomers are shown with green. The members
abandoning the community in the next time step are shown with orange or
purple colour, depending on whether they are old or new. (This latter type of
member joins the community for only one time step.) We show a small and
stationary community (a), a small and non-stationary community (b), a
large and stationary community (c) and, finally, a large and non-stationary
community (d). A mainly growing stage (two time steps) in the evolution of
the last community is detailed in e.
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Figure 4 | Effects of links between communities. a, The probability pl of a
member abandoning the community in the next step as a function of the
ratio of the member’s aggregated link weights to other parts of the network
(wout) and the member’s total aggregated link weight (win 1 wout). The inset
shows the average time spent in the community by the nodes, Ætnæ, as a
function of wout/(win 1 wout). b, The probability pd of a community
disintegrating in the next step as a function of the ratio of the aggregated
weights of links from the community to other parts of the network (Wout)
and the aggregated weights of all links starting from the community
(Win 1 Wout). The inset shows the average life-time Æt*æ of communities as a
function of Wout/(Win 1 Wout).
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a community itself predict its future? To address this issue, for each
member in a community we measured the total weight of this mem-
ber’s connections (a measure of how much a member is committed)
to outside of the community (wout) as well as to members belonging
to the same community (win). We then calculated the probability that
the member will abandon the community as a function of the wout/
(win 1 wout) ratio. As Fig. 4a shows for both networks, if the relative
commitment of a user to individuals outside a given community is
higher, then it is more likely that he/she will leave the community. In
parallel, the average time spent in the community by the nodes, Ætnæ,
is a decreasing function of the above ratio (Fig. 4a inset). As Fig. 4a
shows, those with the least commitment have a quickly growing
likelihood of leaving the community. Taking this idea from indivi-
duals to communities, we measured for each community the total
weight of links from the members to others, outside of the commun-
ity (Wout), as well as the aggregated link weight inside the community
(Win). We find that the probability for a community to disintegrate
in the next step increases as a function of Wout/(Win 1 Wout) (Fig.
4b) and the lifetime of a community decreases for large Wout/
(Win 1 Wout) ratios (Fig. 4b inset). However, an interesting obser-
vation is that, whereas the lifetime of the phone-call communities for
moderate levels is relatively insensitive to outside commitments, the
lifetime of the collaboration communities possesses a maximum at
intermediate levels of inter-collaborations (collaboration between
colleagues who belong to different communities). These results sug-
gest that a tracking of the individual’s as well as the community’s
relative commitment to the other members of the community pro-
vides a clue for predicting the community’s fate.

In summary, our results indicate the significant difference between
smaller collaborative or friendship circles and institutions. At the
heart of small cliques are a few strong relationships, and as long as
these persist, the community around them is stable. It appears to be
almost impossible to maintain this strategy for large communities.
Our calculations show that the condition for stability of large com-
munities is continuous change, so that after some time practically all
members are exchanged. Such loose, rapidly changing communities
are reminiscent of institutions, which can continue to exist even after
all members have been replaced by new members. For example, in a
few years most members of a school or a company could change, yet
the school and the company will be detectable as a distinct commun-
ity at any time during its existence.

METHODS
Locating communities. In the CPM method, a community is defined as a union

of all k-cliques (complete sub-graphs of size k) that can be reached from each

other through a series of adjacent k-cliques (where adjacency means sharing

k 2 1 nodes)24,29. When applied to weighted networks, the CPM has two para-

meters: the k-clique size k (in Fig. 1a, b we show the communities for k 5 4) and

the weight threshold w* (links weaker than w* are ignored). The criterion for

selecting these parameters is discussed in the Supplementary Information.

Identifying evolving communities. The basic idea of the algorithm developed

by us to identify community evolution is shown in Fig. 1f. For each pair of

consecutive time steps t and t 1 1, we construct a joint graph consisting of the

union of links from the corresponding two networks, and extract the CPM
community structure of this joint network (I. Derényi, personal communica-

tion). Any community from either the t or the t 1 1 snap-shot is contained in

exactly one community in the joint graph, as by adding links to a network, the

CPM communities can only grow, merge or remain unchanged. Thus, the com-

munities in the joint graph provide a natural connection between the commu-

nities at t and at t 1 1. If a community in the joint graph contains a single

community from t and a single community from t 1 1, then they are matched.

If the joint group contains more than one community from either time steps, the

communities are matched in descending order of their relative node overlap (see

Supplementary Information).
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