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Halting a computer or biological virus outbreak requires a detailed understanding of the timing of the
interactions between susceptible and infected individuals. While current spreading models assume that
users interact uniformly in time, following a Poisson process, a series of recent measurements indicates
that the intercontact time distribution is heavy tailed, corresponding to a temporally inhomogeneous
bursty contact process. Here we show that the non-Poisson nature of the contact dynamics results in
prevalence decay times significantly larger than predicted by the standard Poisson process based models.
Our predictions are in agreement with the detailed time resolved prevalence data of computer viruses,
which, according to virus bulletins, show a decay time close to a year, in contrast with the 1 day decay
predicted by the standard Poisson process based models.
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According to The WildList Organization International
[1] there were 130 known computer viruses in 1993, a
number that has exploded to 4767 in April 2006. With
the proliferation of broadband ‘‘always on’’ connections,
file downloads, instant messaging, Bluetooth-enabled mo-
bile devices, and other communications technologies, the
mechanisms used by worms and viruses to spread have
evolved as well. Still, most viruses continue to spread
through Email attachments. Indeed, according to the
Virus Bulletin [2], the Email worms W32/Netsky.h and
W32/Mytob with the ability to spread itself through Email,
account for 70% of the virus prevalences in April 2006.
When the worm infects a machine, it sends an infected
Email to all addresses in the computer’s Email address
book. This self-broadcast mechanism allows for the
worm’s rapid reproduction and spread, explaining why
Email worms continue to be the main security threat.

In order to eradicate viruses, as well as to control and
limit the impact of an outbreak, we need to have a detailed
and quantitative understanding of the spreading dynamics.
This is currently provided by a wide range of epidemic
models, each adopted to the particular realities of the
computer based spreading process. A common feature of
all current epidemic models [3–10] is the assumption that
the contact process between individuals follows Poisson
statistics, meaning that the probability that an agent inter-
acts with another agent in a dt time interval is dt=h�i,
where h�i is the mean interevent time. Furthermore, the
time � between two consecutive contacts is predicted to
follow an exponential distribution with mean h�i.
Therefore, reports of new infections should decay expo-
nentially with a decay time of about a day, or at most a few
days [3–7], given that most users check their Email on a
daily basis, providing h�i of approximately a few days (see
below). In contrast, prevalence records indicate that new
infections are still reported years after the release of anti-

viruses ([2,3,11]), and their decay time is in the vicinity of
years, 2–3 orders of magnitude larger than the Poisson
process predicted decay times.

A possible resolution of this discrepancy may be rooted
in the failure of the Poisson approximation for the inter-
event time distribution, currently used in all modeling
frameworks. Indeed, recent studies of Email exchange
records between individuals in a university environment
have shown that the probability density function P��� of
the time interval � between two consecutive Emails sent by
the same user is well approximated by a fat tailed distri-
bution P��� � ��1 [12–17]. In the following we provide
evidence that this deviation from the Poisson process has a
strong impact on the Email worm’s spread, offering a
coherent explanation of the anomalously long prevalence
times observed for Email viruses.

Email activity patterns.—The contact dynamics respon-
sible for the spread of Email worms is driven by the Email
communication and usage patterns of individuals. To char-
acterize these patterns we studied two Email data sets. The
first data set contains Emails from a university environ-
ment, capturing the communication pattern between 3188
users, consisting of 129 135 Emails [12]. The second data
set contains Emails from a commercial provider
(www.free-mail.hu) spanning ten months, 1 729 165 users
and 39 046 030 Emails. For the two Email data sets P��� is
rather broad, following approximately a power law with
exponent � � 1 and a cutoff at large � values (Fig. 1).
Most important, the value of the cutoff depends on the time
window T over which the data has been recorded
[Figs. 1(a) and 1(b)]. By restricting the data to varying
time windows we find that P��� goes to zero as 1� �=T
when � approaches T. After correcting for the finiteness of
the observation time window we obtain that the distribu-
tions for different T values collapse into a single curve
[Figs. 1(c) and 1(d)], representing the true interevent time
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distribution. The obtained P��� is well approximated by a
power law decay followed by an exponential cutoff
[Figs. 1(c)–1(f)], i.e.,

 PE��� � A��� exp
�
�
�
�E

�
; (1)

where A is a normalization factor. The power law decay at
small and intermediate � is clearly manifested on the log-
log plot of P��� [Figs. 1(c) and 1(d)], consistent with � �
1, spanning over four [Fig. 1(c)] to six [Fig. 1(d)] decades.
The exponential cutoff is best seen in a semilog plot
after removing the power law decay [Figs. 1(e) and 1(f)],

resulting in a decay time �E � 25� 2 days and �E � 9�
1 months (approximately 270 days) for the university and
commercial data sets, respectively [see Figs. 1(c)–1(f)]. In
contrast, the Poisson approximation predicts PP��� �
exp��t=h�i�=h�i [18], where h�i is the mean interevent
time, taking the values 0.86 and 4.9 days for the university
and commercial data, respectively.

Dynamics of worm spreading.—To investigate the im-
pact of the observed non-Poisson activity patterns on
spreading processes we study the spread of Email worms
among Email users. For the moment we ignore the possi-
bility that some users may delete the infected Email or may
have installed the worm antivirus and therefore do not
participate in the spreading process (we will return later
to the possible impact of these events on our predictions).
Therefore, the spreading process is well described by the
susceptible-infected (SI) model on the Email network.

The spreading dynamics is jointly determined by the
Email activity patterns and the topology of the correspond-
ing Email communication network [12,19]. The Email
activity patterns are reflected in the infection generation
times, where the generation time is defined as the time
interval between the infection of the primary case (the user
sending the Email) and the infection of a secondary case (a
different user opening the received infected Email). From
the perspective of the secondary case, the time when a user
receives the infected Email is random and the generation
time is the time interval between arrival and the opening of
the infected Email. In most cases received Emails are
responded to in the next Email activity burst [12,15], and
viruses are acting when Emails are read, approximately the
same time when the next bunch of Emails are written.
Therefore the generation time can be approximated by
the time interval between the arrival of a virus infected
Email and the next Email sent to any recipient by the
secondary case. If we model the Email activity pattern as
a renewal process [18] with interevent time distribution
P��� then the generation time is the residual waiting time
and is characterized by the probability density function
[18]

 g��� �
1

h�i

Z 1
�
dxP�x�: (2)

Next we calculate the average number of new infections
n�t� at time t resulting from an outbreak starting from a
single infected user at t � 0. Although the Email network
contains cycles, it is very sparse; thus, we approximate it
by a treelike structure. Previous analytical studies have
shown that this approximation captures the main features
of the spreading dynamics on real networks [3,20]. In this
case n�t� is given by [20]

 n�t� �
XD
d�1

zdg
?d�t�; (3)

where zd is the average number of users d Email contacts
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FIG. 1 (color online). Distribution P��� of the interevent time
between two consecutive Emails sent by an Email user. The left-
hand and right-hand panels represent the university and com-
mercial data sets, respectively. For each data set we aggregate
the interevent times of all users (the distribution for single users
exhibits a similar behavior [15]) and apply a logarithmic binning
to account for the fact that the number of observed events
decreases with increasing �. (a),(b) Log-log plot of P��� for � >
10�2 days, emphasizing the large � behavior for different time
window sizes T. (c),(d) The same plots after removing the finite
time window effects, the data collapsing into a single curve. The
solid line represents the power law decay P��� � ��1.
(e),(f ) Semilog plot emphasizing the exponential decay at large
�, for the largest time window T. The solid lines are fit to an
exponential decay �P��� � e��=�E resulting in �E �
25� 2 days and 9� 1 months for the university (e) and
commercial (f) data sets, respectively. The outlayer in (f) was
excluded when fitting to an exponential decay.
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away from the first infected user, D is the maximum of d,
and g?d�t� is the d-order convolution of g���, g?1�t� �
g�t�, and g?d�t� �

R
t
0 d�g���g

?d�1�t� �� for d > 1, rep-
resenting the probability density function of the sum of d
generation times. Substituting the Poisson approximation
and Email data interevent time distributions into (2) and
the result into (3), we obtain

 n�t� � F�t� exp
�
�
t
�0

�
; (4)

where �0 � h�i for the Poisson approximation, �0 � �E for
the Email data, and

 F�t� �

(
1
h�i

PD
d�1

zd
�d�1�! �

t
h�i�

d�1 Poisson approximationPD
d�1 zdf

?d�t� Email data;

(5)

where f�t� � Ah�i�1
R
1
� dxx

��e���x�=�E . In the long time
limit (4) is dominated by the exponential decay while F�t�
gives just a correction. The decay time is, however, sig-
nificantly different for the Poisson approximation and the
real interevent time distribution.

To test these predictions we perform numerical simula-
tions using the detailed Email communication history. In
this case a susceptible user receiving an infected Email at
time t becomes infected and sends an infected Email to all
its Email contacts at t0 > t, where t0 is the time he or she
sends an Email for the first time after infection, as docu-
mented in the Email data. To reduce the computational cost
we focus our analysis on the smaller university data set.
The average number of new infected users resulting from
the simulation exhibits daily (inset of Fig. 2) and weekly
oscillations (main panel of Fig. 2), reflecting the daily and
weekly periodicity of human activity patterns. More im-
portantly, after ten days the oscillations are superimposed
on an exponential decay, with a decay time about 21 days

[see Fig. 1(b)]. The Poisson process approximation would
predict a decay time of 1 day, in evident disagreement with
the simulations (Fig. 2). In contrast, using the correct
interevent time distribution for the university data set we
predict a decay time of 25� 2 days, in good agreement
with the numerical simulations (Fig. 2).

The analysis of the university data set allows us to
demonstrate the connection between the long � behavior
of the interevent time distribution P��� and the long time
decay of the prevalence n�t�. Our main finding is that the
prevalence decay time is given by the characteristic decay
time of the interevent time distribution. More importantly,
we show that the Poisson process approximation clearly
underestimates the decay time. For Poisson processes the
two time scales, the average interevent time and the char-
acteristic time of the exponential decay coincide, being
both of the order of 1 to at most a few days. Using
measurements on the commercial data set, containing a
larger number of individuals and covering a wider spec-
trum of Email users, we can extrapolate these conclusions
to predict the behavior of real viruses. Given the value of
�E for the commercial data set, we predict that the Email
worm prevalence should decay exponentially with time,
with a decay time about nine months. The prevalence
tables reported by the Virus Bulletin web site [2] indicate
that worm outbreaks persist for several months, following
an exponential decay with a decay time around 12 months
(Fig. 3). Our nine month prediction is thus much closer to
the observed value than the h�i � 1–4 day prediction
based on the Poisson approximation. The fact that our
prediction underestimates the actual decay time by about
three months is probably rooted in the fact that the com-
mercial data set, despite its coverage of an impressive

 

0 1 2 3 4 5
0

10

20

0 20 40 60 80
t (days)

10
0

10
1

10
2

10
3

n(
t)

FIG. 2. Average number of new infections resulting from
simulations using the Email history of the university data set
(solid line), using a 1 day interval binning. The inset shows a
zoom of the initial stages of the spreading process using a 1 hour
interval binning. The lines correspond to the exponential decay
predicted by the Poisson process approximation (dashed line)
and the true interevent distribution (dot-dashed line).
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FIG. 3. Number of new infections reported for six worm out-
breaks, according to the Virus Bulletin [2]. The lines are fit to an
exponential decay resulting in the decay times (measured in
months): LoveLetter (13� 2), Ethan (12� 1), Marker (14� 2),
Class (12� 1), Melissa (13� 1), W32/Ska (11� 1).
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1:7� 106 users, still captures only a small segment (ap-
proximately 0.1%) of all Internet users.

As we discussed above, some other factors potentially
affecting the spreading of Email worms were not consid-
ered in our analysis. First, some users may delete the
infected Emails or may have installed the worm antivirus.
Since these users do not participate in the spreading pro-
cess they are eliminated from the average number of users
zd that are found d Email contacts away from the first
infected user. While this would affect the initial spread
characterized by F�t� (5), the exponential decay in (4) and
the decay time �0 � �E will not be altered. Second, some
Email viruses do not use the self-broadcasting mechanism
of Email worms. For example, file viruses require the
Email user to attach the infected file into a sent Email in
order to be transmitted. In turn, only some Email contacts
will receive the infected file. Once again, this affects zd but
not the Email activity patterns. Therefore, the prevalence
of Email viruses in general should decay exponentially in
time with a decay time �0 determined by the decay time of
the interevent time distribution �E. Third, new virus strains
regularly emerge following small modifications of earlier
viruses. Within this work new virus strains are modeled as
new outbreaks. An alternative approach is to analyze all
strains together, modeling the emergence of new strains as
a process of reinfection. In this second approach the dy-
namics is better described by the susceptible-infected-
susceptible model [3]. Earlier work has shown that if
reinfections are allowed in networks with a power law
degree distribution, long prevalence decay times may
emerge, which increase with increasing the network size
[3]. The data shown in Fig. 3 represent, however, the spread
of a single virus strain, which is better captured by the SI
model. For the SI model, however, for a Poisson activity
pattern we should get a rapid decay in prevalence, indicat-
ing that the empirically observed long decay times cannot
be attributed to this reinfection-based mechanism.

A series of recent measurements indicates that power
law interevent time distributions are not a unique feature of
Email communications, but emerge in a wide range of
human activity patterns, describing the timing of financial
transactions [21,22], response time of internauts [23], on-
line games [24], log-in times into Email servers [25], and
printing processes [26]. Together they raise the possibility
that non-Poisson contact timing is a common feature of
human dynamics and thus could impact other spreading
processes as well. Indeed, measurements indicate that the
patterns of visitation of public places, like libraries [15], or
the long range travel patterns of humans, involving car and
air travel, is also driven by fat tailed interevent times [27].
Such travel patterns play a key role in the spread of
biological viruses, such as influenza or SARS [28]. Taken
together, these results indicate that the anomalous decay
time predicted and observed for Email viruses may, in fact,
apply more widely, potentially impacting the spread of
biological viruses as well.
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and A.-L. Barabási, Phys. Rev. E 73, 036127 (2006); J. G.
Oliveira and A.-L. Barabási, Nature (London) 437, 1251
(2005).

[16] A. Vazquez, Physica (Amsterdam) 373A, 747 (2007).
[17] A. Vazquez, Phys. Rev. Lett. 95, 248701 (2005).
[18] W. Feller, An Introduction to Probability Theory and its

Applications (Wiley, New York, 1966), Vol. II.
[19] H. Ebel, L.-I. Mielsch, and S. Bornholdt, Phys. Rev. E 66,

035103 (2002).
[20] A. Vazquez, Phys. Rev. Lett. 96, 038702 (2006).
[21] V. Plerou, P. Gopikirshnan, L. Amaral, X. Gabaix, and

H. Stanley, Phys. Rev. E 62, R3023 (2000).
[22] J. Masoliver, M. Montero, and G. Weiss, Phys. Rev. E 67,

021112 (2003).
[23] A. Johansen, Physica (Amsterdam) 296A, 539 (2001).
[24] T. Henderson and S. Nhatti, in Proceedings of the Ninth

ACM International Conference on Multimedia, Ottawa,
Canada, 2001 (ACM, New York, 2001), pp. 212–220.

[25] A. Chatterjee, cond-mat/0307533.
[26] R. Harder and M. Paczuski, Physica (Amsterdam) 361A,

329 (2006).
[27] D. Brockmann, L. Hufnagel, and T. Geisel, Nature

(London) 439, 462 (2006).
[28] V. Colizza, A. Barrat, M. Barthelemy, and A. Vespignani,

Proc. Natl. Acad. Sci. U.S.A. 103, 2015 (2006).

PRL 98, 158702 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 APRIL 2007

158702-4


