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The influence of the high intracellular concentration of macromol-
ecules on cell physiology is increasingly appreciated, but its impact
on system-level cellular functions remains poorly quantified. To
assess its potential effect, here we develop a flux balance model of
Escherichia coli cell metabolism that takes into account a systems-
level constraint for the concentration of enzymes catalyzing the
various metabolic reactions in the crowded cytoplasm. We dem-
onstrate that the model’s predictions for the relative maximum
growth rate of wild-type and mutant E. coli cells in single substrate-
limited media, and the sequence and mode of substrate uptake and
utilization from a complex medium are in good agreement with
subsequent experimental observations. These results suggest that
molecular crowding represents a bound on the achievable func-
tional states of a metabolic network, and they indicate that models
incorporating this constraint can systematically identify alterations
in cellular metabolism activated in response to environmental
change.

flux balance analysis � metabolic networks � systems biology

An important aim of systems biology is the identification of the
organizing principles and fundamental constraints that char-

acterize the function of molecular interaction networks and the
limits of an organism’s phenotypic diversity (1–3). Flux balance-
based modeling approaches, combining the constraints imposed by
the metabolic network’s structure with, e.g., mass- or energy-
conservation principles (3–6), are especially successful in providing
experimentally testable predictions on an organism’s metabolic flux
state and growth rate. A relative shortcoming of these approaches,
however, is that they do not take into account the physical and
spatial constraints resulting from the cell’s unique intracellular
milieu (7–9). For example, �20–30% of the Escherichia coli cyto-
plasm is occupied by macromolecules, many of them enzymes,
whose cytoplasmic concentration cannot be further increased with-
out drastically affecting protein folding, protein–protein association
rates, biochemical reaction kinetics, and transport dynamics within
a cell (9, 10). This suggests that constraint-based modeling ap-
proaches, such as flux balance analysis (FBA) (3, 11), could be
improved if we take into account that the enzymes catalyzing each
reaction compete for the available cytoplasmic space (12, 13),
potentially limiting the attainable flux rates.

Current flux balance-based modeling approaches also have lim-
ited ability to predict substrate uptake from the environment.
Extensive experimental data indicates that when grown in complex
medium bacterial cells use the available substrates either prefer-
entially or simultaneously depending on the growth condition (see,
e.g., refs. 14–17). Efforts to model mixed-substrate growth have
assumed specific kinetic expressions for substrate uptake and
biomass growth rates, and their predictions are formulated in terms
of known model parameters (15, 18). Similarly, FBA predictions are
based on previous knowledge of the maximum uptake rates in the
corresponding medium (the actual variables one aims to predict),
and, in contrast to empirical evidence, FBA in itself predicts the

simultaneous utilization of all carbon sources from a mixed-
substrate growth medium. One way to overcome this deficiency is
the superposition of regulatory mechanisms (in the form of mRNA
expression signatures) on the FBA model, assessing which sub-
strates are taken up and which are not (19). Yet regulatory
mechanisms appear during the course of evolution because they
result in a selective advantage for the cell. This selective advantage
results from better use of the available resources within the met-
abolic constraints of the organism. Therefore, the metabolic con-
straint can be considered as the primary cause, whereas the
regulatory processes represent the specific molecular mechanism
developed to cope with this constraint. This fact opens the possi-
bility for a FBA model that, after imposing the relevant constraints,
predicts the selective advantage of implementing a regulatory
mechanism. Here, we develop a modified FBA model that incor-
porates a solvent capacity constraint for the attainable enzyme
concentrations within the crowded cytoplasm. Using this model, we
predict the maximum growth rate of E. coli MG1655 wild-type and
mutant strains on single carbon sources and for the dynamic
patterns of substrate utilization from a mixed-substrate growth
medium. We test the model predictions by using growth rate
measurements and microarray and substrate concentration tempo-
ral profiles, and we obtain a good agreement between model
predictions and experimental measurements. Taken together, these
results suggest that macromolecular crowding indeed imposes a
physiologically relevant constraint on bacterial metabolic activity
and that incorporating this constraint allows for improved modeling
of cell metabolism from system-level principles.

Results
FBA with Molecular Crowding. In the flux balance model of cellular
metabolism a cell’s metabolic network is mathematically repre-
sented by the stoichiometric matrix, Smi, providing the stoichiomet-
ric coefficient of metabolite m (m � 1, . . . , M) in reaction i (i �
1, . . . , N) (3, 20), where M and N are the number of metabolites
and reactions, respectively. The cell is assumed to be in a steady
state, where the concentration of each intracellular metabolite
(other than the metabolites that constitute the biomass) remains
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constant in time. Thus, the stationary reaction rates (fluxes)
consuming and producing a metabolite should balance,

�
i�1

N

Smi fi � 0, [1]

where fi denotes the flux of reaction i. The study of the solution
space defined by Eq. 1 together with maximum capacity constraints
for the uptake rates of extracellular substrates constitutes the basis
of FBA (3).

We extend this framework to consider the physical and spatial
constraints resulting from the very high intracellular concentra-
tion of macromolecules (7–9). Given that the enzyme molecules
have a finite molar volume vi, we can fit only a finite number of
them in a given volume V. Indeed, if ni is the number of moles
of the ith enzyme, then

�
i�1

N

vini � V. [2]

Eq. 2 represents a constraint on the enzyme levels ni, potentially
affecting their maximum attainable values and relative abundance.
Dividing by cell mass M, we can reformulate this constraint in terms
of the enzyme concentrations Ei � ni/M (moles per unit mass),
resulting in

�
i�1

N

viEi �
1
C

, [3]

where C � M/V � 0.34 g/ml is the E. coli cytoplasmatic density (21).
Eq. 3 imposes a constraint on the maximum attainable enzyme
concentrations and, therefore, we refer to it as the enzyme con-
centration constraint. This constraint is reflected in the metabolic
fluxes as well. Indeed, an enzyme concentration Ei results in a flux
fi � biEi over reaction i, where the parameter bi is determined by the
reaction mechanism, kinetic parameters, and metabolite concen-
trations. Therefore, the enzyme concentration constraint (Eq. 3) is
reflected in the metabolic flux constraint

�
i�1

N

ai fi � 1, [4]

where ai � Cvi/bi, affecting the maximum attainable fluxes and the
flux distribution among different metabolic reactions. From here
on, we refer to this mathematical framework as ‘‘flux balance
analysis with molecular crowding’’ (FBAwMC). Furthermore, be-
cause the coefficient ai quantifies the contribution to the overall
crowding by reaction i we refer to it as the ‘‘crowding coefficient of
reaction i,’’ or simply ‘‘crowding coefficient.’’ Finally, we note that
the enzyme concentration constraint is not the only additional
constraint that could potentially restrict the metabolic capabilities
of E. coli (for example, transporter capacities may be similarly
limiting). Yet, our aim here is to test the predictive value of a model
that assumes that the enzyme concentration constraint is indeed a
main factor limiting the maximal metabolic capabilities of E. coli.

FBAwMC Predicts the Relative Maximum Growth of E. coli Growing on
Single Carbon Sources. To examine the validity of macromolecular
crowding as a constraint on a cell’s metabolic activity, and to test the
predictive capability of the FBAwMC framework, we first examined
the phenotypic consequences of extracellular substrate availability
during growth in single carbon-limited medium with oxygen being
in abundance, focusing on the maximum growth rate. The
FBAwMC contains as a free parameter the average crowding

coefficient �a�, and the model predictions for the maximum growth
rate are proportional to �a�. We first assumed that �a� is a constant
independent of the substrates. In this case it is possible to make
predictions for the maximum growth rate in different substrates in
arbitrary units. To obtain the maximum growth rates in specific
units we fit �a� to minimize the mean-square deviation between the
predicted and measured growth rates, resulting in �a� � 0.0040 �
0.0005 h�g/mmol, in which g is grams of dry weight. We have
obtained an independent estimate of ai for �100 E. coli enzymes as
well [supporting information (SI) Datasets 1 and 2], resulting in
values between 10�6 and 10�1 and most probable values between
10�5 and 10�2 (in units of h�g/mmol). The obtained �a� is, therefore,
within the expected range.

Using the reconstructed E. coli MG1655 metabolic network (22)
(SI Dataset 1), we first tested the maximal growth rate of E. coli
MG1655 cells in various single carbon-limited media and compared
the results with the theoretically predicted growth rates (Fig. 1a). In
most cases the line of perfect agreement falls within the standard
deviation, implying an overall good agreement between the model
predictions and the measured maximum growth rates. For glucose
and glycerol, the line of perfect agreement is outside the standard
deviation, indicating that our assumption of a substrate-
independent �a� is not valid for these two substrates. E. coli is better
adapted to growth on glucose, suggesting a smaller average crowd-
ing coefficient than in any of the other carbon sources. Indeed, the
average crowding coefficient necessary to obtain a perfect agree-
ment for glucose is smaller: �a� � 0.0031 � 0.0001 h�g/mmol. In
contrast, in some carbon-limited media E. coli reaches its predicted
maximal growth rate only after a period of adaptive evolution (23,
24), suggesting a higher average crowding coefficient before met-
abolic adaptation. Indeed, the average crowding coefficient neces-
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Fig. 1. Predicted and measured maximal growth rates comparison. (a)
Comparison between the predicted (y axis) and measured (x axis) growth rates
� of E. coli MG1655 grown in M9 minimal medium with various carbon
sources. For a perfect match between experiments and theory the symbols
should fall on the black diagonal. The symbols indicate the carbon substrate
identified in the key. The predicted growth rates were obtained by using �a� �
0.0040 h�g/mmol (see SI Text sections S1 and S2). The error bars represent
standard deviation over 1,000 sets of specific ai parameters. (b) Same plot for
single gene deletion E. coli mutants growing in glucose, the deleted genes
being indicated in the key. The mutant growth rates �� are given relative to
the predicted and measured maximal growth rate � of wild-type E. coli cells
growing in glucose-limited medium.
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sary to obtain a perfect agreement for glycerol is larger: �a� �
0.0053 � 0.0001 h�g/mmol.

The FBAwMC framework also allows us to predict the maximal
growth rate of microbial strains with deleted metabolic enzymes, by
simply removing the corresponding metabolic reaction from the
FBAwMC model and recomputing the maximal growth rate. To
test the power of this predictive capability we experimentally
determined the maximal growth rate of several E. coli MG1655
single gene deletion mutants grown in glucose-limited medium. As
shown in Fig. 1b, the agreement between predicted and measured
maximal growth rates is remarkably good for various E. coli
mutants, providing further evidence for the validity of our ap-
proach. It is worth noting that, as with FBA alone (25, 26), this
analysis is not limited to single-enzyme mutants, but can be carried
out for any combination of two or more enzyme deletions as well.

Substrate Hierarchy Utilization by E. coli Cells Growing in Mixed
Substrates. Extensive experimental data indicate that when grown
in complex media bacterial cells use the available substrates either
preferentially or simultaneously (see, e.g., refs. 14, 15, and 17),
depending on the growth conditions. To further assess the role of
an enzyme concentration limit on cellular metabolism we next
examined the substrate utilization of E. coli cells in a mixed
carbon-limited medium, and we compared the results to the
FBAwMC E. coli model-predicted substrate uptake and utilization
(Fig. 2). We grew E. coli MG1655 for 12 h in a batch culture
containing an equal concentration (0.04% each) of five different
carbon sources (galactose, glucose, maltose, glycerol, and lactate)
(Fig. 2a and SI Fig. 8). These substrates are taken up by E. coli
through substrate-specific transport mechanisms and enter the
central carbon metabolism through various substrate intermediates
(Fig. 3 metabolic pathways). Note, that in single carbon-limited

medium, maximum growth rates of E. coli in glucose (0.74 h�1) was
higher; whereas the experimentally measured maximal growth rates
in glycerol (0.41 h�1) and lactate (0.38 h�1) were lower than the
model predictions (Fig. 1a). In contrast, the maximal growth rates
obtained on maltose (0.61 h�1) and galactose (0.51 h�1) were in
good agreement with the FBAwMC-predicted values (Fig. 1a).

As typically seen in batch culture, initially E. coli cells showed
minimal growth (lag phase) followed by rapid population ex-
pansion between 2 and 8 h (exponential growth phase) with no
further growth afterward (stationary phase) (Fig. 2a). Parallel
with this, the growth rate rapidly increased with the start of the
logarithmic growth phase, reaching its maximum between 3 and
3.5 h. Thereafter the growth rate steadily declined, becoming
negligible to zero after 8 h (Fig. 2a).

Of the five supplied carbon sources, in the first 3.5 h of growth
only glucose was used (phase 1); it was depleted from the medium
within the first 4 h (Fig. 2b). This ‘‘exclusive glucose use’’ phase
coincided with the initial explosive growth and the maximal at-
tained growth rate of the culture (Fig. 2a). At 3.5–4 h E. coli cells
started to use all four remaining carbon sources, albeit at different
rates. Galactose, lactate, and maltose were preferentially used
during the next 2 h (phase 2), all three of them being depleted from
the growth medium by the sixth hour (Fig. 2b). During this ‘‘mixed
carbon utilization’’ phase lactate was used up at the fastest rate,
followed by maltose and galactose. A small amount of glycerol was
also taken up during this time interval, but its predominant utili-
zation occurred only after 6 h, and it was completely depleted from
the medium by 7.5 h (Fig. 2b). The concentration of acetate, a well
known byproduct of rapid E. coli aerobic growth (27, 28), increased
steadily, reaching its peak concentration in the growth medium at
6 h of growth. Thereafter, the process was reversed, and acetate,
along with glycerol, was rapidly consumed and was depleted from
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Fig. 2. E. coli growth profile and predicted vs. measured hierarchy of substrate utilization. (a) The absolute concentration (black curve) and maximal growth rates
(green curve) of a batch culture of E. coli cells grown in M9 minimal medium containing an equal ratio of glucose, maltose, galactose, glycerol, and lactate are shown,
together with the pH (blue curve) and oxygen concentration, pO2 (red curve). (b) The measured concentration of the indicated carbon sources in the growth medium.
The growth experiments were performed in triplicate (SI Fig. 8), and means and standard deviations are shown here. The three substrate utilization phases, phase 1
(exclusive glucose), phase 2 (mixed substrates), and phase 3 (glycerol and acetate), are indicated in light blue, purple, and white backgrounds, respectively. (c) Predicted
substrate uptakes from the growth medium based on the FBAwMC model. The color coding for substrate utilization curves is identical in b and c, and the error bars
represent the standard deviations of the data analyzed from the samples collected from three individual bioreactor runs (SI Fig. 8).
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the medium by 8 h (Fig. 2b), denoting a ‘‘late carbon utilization’’
phase in the culture (phase 3). Of note, as single carbon source,
acetate provides a lower maximal growth rate (0.24 h�1) than any
of the five supplied carbon sources (Fig. 1a). Taken together, the
sequential order of carbon substrates’ uptake in the batch culture
experiment only partially correlates with the maximal growth rate
they individually provide: it appears earlier for lactate and later for
maltose and glycerol.

Subsequently, we tested FBAwMC E. coli model on the mixed-
substrate conditions. In contrast with FBA (3, 11), which predicts
the simultaneous utilization of all carbon sources, we find a
remarkably good correlation between the mode and sequence of
FBAwMC-predicted and measured substrate uptake and consump-
tion (Fig. 2 b and c). There are, however, two notable differences.
First the FBAwMC predicts a lesser excretion of acetate. In turn the
substrates are consumed faster in vivo (Fig. 2b), because a larger
fraction of the carbon source is diverted toward the excretion of
acetate. As a consequence the different phases of substrate con-
sumption are shifted to the right (longer times) for the model
predictions. The second major discrepancy is the delayed consump-

tion of galactose in the model predictions (Fig. 2c). Yet, overall
FBAwMC correctly predicts the existence of the three experimen-
tally observed phases of substrate consumption: initial consumption
of glucose, intermediate mixed-substrate consumption, and late
consumption of glycerol and acetate.

As surrogate markers of cellular metabolism, during the batch
culture experiments we also traced the changes in pH and oxygen
concentrations in the growth medium. We observed a steady
decline in pH during the first 6 h, followed by a slight increase then
decrease between 6 and 7 h, and finally an increase between 7 and
8 h (Fig. 2a and SI Fig. 8). There was also an accelerating decline
in the dissolved oxygen concentration (pO2) in the medium during
the first 7 h, followed by a rapid stepwise increase during the next
30 min. However, the decline phase (indicating aerobic respiration
in an increasingly acidic environment because of acetate excretion)
was consistently interrupted by rapid upswings in pO2 concentra-
tion (Fig. 2a and SI Fig. 8). These spikes indicate brief pauses in
aerobic metabolism likely due to switches in predominant substrate
use. Indeed, the first of these spikes, at �4 h, correlates with the
depletion of glucose and initiation of mixed-substrate utilization;
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the second, at �5 h, with the depletion of lactate and increased
utilization of maltose; and the third, at �6 h, with the start of joint
glycerol and acetate utilization. Similarly, the first rapid increase in
oxygen concentration at �7 h correlates with the near-depletion of
glycerol, followed by a final increase after 30 min corresponding
with the depletion of acetate from the medium (Fig. 2b).

The Mode and Sequence of Substrate Utilization Correlate with the
Expression of Genes Participating in the Uptake Modules. We also
prepared mRNA from samples obtained at 30-min intervals be-
tween 2 and 8 h and processed them for microarray analysis
presented as SI Dataset 3. At the level of substrate uptake pathways
(Fig. 3) it is evident that the expression of ptsG, the gene encoding
the glucose transporter PtsG/Crr, was at a high level from the first
time point up until the depletion of glucose from the growth
medium, and ptsG expression was rapidly turned off afterward.
Similarly, the expression of the gene (lldP) encoding the lactate
transporter, LldP, was high during the first 4.5 h of growth and was
turned off rapidly thereafter, in agreement with the earlier than
predicted utilization of lactate. In contrast, the expression of gene
products responsible for maltose and galactose uptake and utiliza-
tion were turned on much later and peaked at 4.5–5.5 h, corre-
sponding with the period of their maximal uptake. The expression
of gene products responsible for glycerol uptake and utilization
peaked in two waves, the smaller one between 4.5 and 5 h and the
larger one at 6.5–7 h, the latter corresponding to maximal glycerol
consumption from the medium (Fig. 2b). Finally, the expression of
acs, whose gene product catalyzes acetate uptake toward the citric
acid cycle, peaked between 6 and 8 h of growth, corresponding to
the maximal uptake of previously secreted acetate from the growth
medium. We note that all these changes are in good agreement with
the FBAwMC model-predicted uptake of the corresponding sub-
strates (Fig. 3, black tracings).

To assess the quality of the microarray profiles and to identify
genes with expression patterns that are similar to those of genes
encoding enzymes of the uptake pathways we used TimeSearcher
(29). We find that most genes displaying expression patterns similar
to those of the query genes are colocalized with them in the same
operon (SI Figs. 10–15). For example, for the maltose uptake
module genes (malEFGK, malQ, and glk), TimeSearcher identified
several other genes (lamB, malM, malP, malS, and malZ) with
similar expression profiles. These genes are part of various operons
within the maltose regulon (30), although not all of them directly
participate in maltose uptake. Similarly, for glycerol metabolism
several related glycerol utilization genes (glpA, glpB, glpC, glpD,
glpQ, and glpT) displayed expression patterns that were similar to
those of the three genes responsible for glycerol uptake (glpF, glpK,
and gpsA). The products of these genes are part of the pathway for
glycerol catabolism after its uptake.

Activation of Stress Programs upon Switching Metabolic Phases. To
assess the global state of E. coli transcriptome during the various
metabolic phases of the time course experiment, we used three
different data analysis methods to analyze the full microarray data.
These methods included hierarchical clustering with optimal leaf
ordering (31, 32) (Fig. 4), principal component analysis (PCA) (33)
(SI Fig. 9), and a probabilistic clustering method based on hidden
Markov models (HMMs) (34) (SI Figs. 19–26). It is evident that
during the exclusive glucose utilization phase there are similar
expression profiles in all samples collected between 2 and 3.5 h,
followed by transition in the transcriptome state at the beginning of
mixed utilization phase after 4 h (Fig. 4). Within the latter phase,
the up-regulation of, e.g., the genes of the maltose regulon is clearly
evident (Fig. 4).

Samples obtained during the mixed-substrate utilization phase (5
and 5.5 h) and the late carbon utilization phase (6.5 h) display
similar global expression profiles (Fig. 4), interrupted by a signifi-
cant alteration in the expression profile at 6 h that denotes the

switch from acetate secretion to acetate utilization (Fig. 3). Inter-
estingly, the transcriptome at 6 h displays substantial similarity to
that characterizing E. coli cells at the (near) exhaustion of all
substrates from the medium (7–8 h), a phase that is characterized
by generic stress response (Fig. 4 and SI Fig. 27). Similarly, many of
the genes up-regulated at the end of the last phase are also
up-regulated to a lesser extent at 3.5 h, the stage of switching from
exclusive glucose utilization to a mixed-substrate utilization phase.

To further characterize the time-point-specific expression pro-
files, we also prepared mRNA samples from individual mid-
logarithmic batch culture E. coli cells (OD600 � 0.2) grown in
glucose-, maltose-, glycerol-, acetate-, lactate, or galactose-limited
medium, processed them for microarray analysis (presented as SI
Datasets 4 and 5), and compared the obtained transcriptome
profiles with those of the individual time points (Fig. 4 Lower) from
mixed-substrate experiment. It is evident that the transcriptome
profiles during the glucose-only and mixed-substrate utilization
phases display the highest correlation to that of glucose- and
maltose-limited cultures, especially at the initial time points,
whereas the late carbon utilization profiles are most similar to that
of glycerol- and, especially, acetate-limited cultures. Highly notable

Fig. 4. Analysis of microarray expression data. (Upper) Hierarchical clustering
with optimal leaf ordering (31) identifies three major expression modes. Relative
gene expression values from the highest (red) to the lowest (green) are shown, as
indicated by the left side of the color scale bar (�4 to �4). Expression mode A:
genes that are up-regulated until 4.5 h (red box). Expression mode B: genes with
peak expression at 6 h and after 7.5 h. Expression mode C: genes with peaks at
3.5handafter7.5h.SeetheGOanalysisof thesethreeexpressionmodes inSIFigs.
16–18. The purple and blue boxes indicate up-regulation of maltose and glycerol
regulons, respectively. The temporal order of the three phases of substrate
utilization is shown in light blue, purple, and white shades (as in Fig. 2). (Lower)
Matrix comparing the overall correlation of expression profiles at the given time
points with that of obtained in mid-logarithmic batch cultures of the indicated
single carbon-limited media, as indicated by the right side of the color scale bar
[�0.5 (red–high) and �0.5 (green–low)].
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is the transcriptome profile of galactose-limited cultures, which
shows some similarity to that of cells at the stage of switching from
exclusive glucose utilization to a mixed-substrate-utilization phase
(3.5 h), and an even higher similarity to the transcriptome profiles
of cells when all carbon sources are depleted (8 h). Thus, E. coli cells
display a partial adaptation/stress response at each major metabolic
transition, followed by a generic stress response (SI Fig. 27) and
implementation of a foraging program (35) at complete exhaustion
of all extracellular substrates that seems to be most primed for
acetate and galactose catabolism.

Discussion
A key aim of systems biology is the identification of the organizing
principles and fundamental constraints that characterize the func-
tion of molecular interaction networks, including those that define
cellular metabolism. In the present work we have focused on the
identification of principles that define the growth and substrate
utilization mode of bacterial cells in complex environments. Our
experimental results indicate the occurrence of three major met-
abolic phases during the growth of E. coli on one type of mixed-
substrate medium. Glucose, which by itself provides the highest
growth rate, is preferentially used by E. coli, followed by simulta-
neous utilization of maltose, L-lactate, and galactose. Glycerol and
(secreted) acetate are used at a third and final stage of growth. In
addition, global mRNA expression data indicate that the organism-
level integration of cellular functions in part involves the appear-
ance of partial stress response by E. coli at the boundaries of major
metabolic phases, and, as previously shown (35), the activation of
a foraging program upon exhaustion of substrates from the growth
medium (Fig. 4).

The simulation results show that the FBAwMC model intro-
duced here successfully captures all main features of the examined
metabolic activities. First, there is a significant correlation between
in vivo relative maximal growth rates of E. coli in different carbon-
limited media and the in silico predictions of the FBAwMC (Fig. 1).
Second, the FBAwMC model predicts remarkably well the exis-
tence of three metabolic phases and hierarchical mode (i.e., single-
or mixed-substrate utilization) of substrate utilization in mixed-
substrate growth medium (Figs. 2–4). In essence, our modeling
approach indicates that when E. coli cells grow in conditions of
substrate abundance their growth rate is determined by the solvent
capacity of the cytoplasm; vice versa, the solvent capacity should be
saturated at the maximal growth rate. Therefore, when growing in
a mixture of abundant carbon sources E. coli cells should prefer-
entially consume the carbon source resulting in the highest growth
rate. At solvent capacity saturation, the synthesis of metabolic
enzymes for the utilization of a second, less efficient, carbon source
can take place only at the expenses of degrading metabolic enzymes
involved in the consumption of the more efficient carbon source.

However, this would result in a growth rate reduction and, there-
fore, cells preferentially using the more efficient carbon source
would outgrow those that allow the simultaneous utilization of
other carbon sources.

We observe, however, two discrepancies of the FBAwMC model
predictions: (i) a higher than predicted amount of secreted acetate
in the growth medium, and (ii) a somewhat earlier uptake and
consumption of various substrates from the medium compared with
that predicted by the model. The first discrepancy is likely rooted
on the contribution of other cell components apart from metabolic
enzymes. With increasing growth rate higher concentrations of
ribosomal proteins, mRNA, and DNA are required in addition to
metabolic enzymes (36). This observation indicates that the
FBAwMC model may underestimate the impact of macromolecular
crowding and the resulting excretion of acetate. The second dis-
crepancy is quite likely a consequence of the first one, as acetate
secretion is generally correlated with an increased carbon source
uptake rate (27).

Taken together, our results show that in silico models incorpo-
rating flux balance and other physicochemical constraints can
capture increasingly well the metabolic activity of bacterial cells,
and that the maximum enzyme concentration is a key constraint
shaping the hierarchy of substrate utilization in mixed-substrate
growth conditions. Yet, while the metabolic capabilities of a cell are
limited by such constraints, in reality any change in metabolic
activity is controlled by regulatory mechanisms evolved in the
context of these constraints. Therefore, constrained optimization
approaches are also expected to help us better understand and/or
uncover regulatory mechanisms acting in E. coli and other
organisms.

Materials and Methods
Mathematical Framework. The FBAwMC modeling framework has
been established, as described in Results and as detailed in SI Text,
S1 and S2.

Growth Experiments, Carbon Substrate, and Microarray Analyses. The
E. coli K12 strain MG1655 (F� �� ilvG rfb50 rph1) was used
throughout the work. Isogenic E. coli mutants (pgk, atpC, gpmA,
nuoA, gdhA, and pfkA) were obtained from F. Blattner (Uni-
versity of Wisconsin, Madison) (37). The experimental details of
the growth rate measurements, substrate concentration assays
and microarray analyses are detailed in SI Text, S3–S12.
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