
PERSPECTIVE

Scale-Free Networks: A Decade
and Beyond
Albert-László Barabási

For decades, we tacitly assumed that the components of such complex systems as the cell, the
society, or the Internet are randomly wired together. In the past decade, an avalanche of research
has shown that many real networks, independent of their age, function, and scope, converge to
similar architectures, a universality that allowed researchers from different disciplines to embrace
network theory as a common paradigm. The decade-old discovery of scale-free networks was one of
those events that had helped catalyze the emergence of network science, a new research field with
its distinct set of challenges and accomplishments.

Nature, society, and many technologies are
sustained by numerous networks that
are not only too important to fail but

paradoxically for decades have also proved too
complicated to understand. Simple models, like
the one introduced in 1959 by mathematicians
Pál Erdős and Alfréd Rényi (1), drove much of
our thinking about interconnected systems. They
assumed that complex systems are wired randomly
together, a hypothesis that was adopted by so-
ciology, biology, and computer science. It had
considerable predictive power, explaining for ex-
ample why everybody is only six handshakes
from anybody else (2–5), a phenomenon ob-
served as early as 1929 (2) but which resonated
in physical sciences only after Duncan Watts and
Stephen Strogatz extended its reach beyond so-
ciology (5). Yet, the undeniable success of the
random hypothesis did pose a fundamental ques-
tion: Are real networks truly random? That is,
could systems such as the cell or a society func-
tion seamlessly if their nodes, molecules, or
peoplewerewired randomly together? This ques-
tion motivated our work as well, leading 10 years
ago to the discovery of the scale-free property
(6, 7).

Our first clue that real networks may show
manifestly nonrandom features also came 10 years
ago from a map of the World Wide Web (WWW)
(8), finding that the probability that a Web page
has exactly k links (in other words, degree k)
follows a power law distribution

P(k) ~ k-g (1)

a stunning departure from the Poisson distribu-
tion predicted by random network theory (1). Yet,
it was not until we realized that Eq. 1 character-
izes the network of actors linked by movies and
scientific papers linked by citations (9) that we

suspected that the scale-free property (6) might
not be unique to theWWW. The main purpose of
the 1999 Science paper was to report this
unexpected similarity between networks of quite
different nature and to show that twomechanisms,
growth and preferential attachment, are the
underlying causes (Fig. 1).

When we concluded in 1999 that we “expect
that the scale invariant state […] is a generic

property of many complex networks” (7), it was
more of a prediction than a fact, because nature
could have chosen as many different architec-
tures as there are networks. Yet, probably the
most surprising discovery of modern network
theory is the universality of the network topology:
Many real networks, from the cell to the Internet,
independent of their age, function, and scope,
converge to similar architectures. It is this uni-
versality that allowed researchers from different
disciplines to embrace network theory as a com-
mon paradigm.

Today, the scale-free nature of networks of
key scientific interest, from protein interactions to
social networks and from the network of inter-
linked documents that make up the WWW to the
interconnected hardware behind the Internet, has
been established beyond doubt. The evidence
comes not only from better maps and data sets
but also from the agreement between empirical
data and analytical models that predict the network
structure (10, 11). Yet, the early euphoria was not
without negative side effects, prompting some re-
searchers to label many systems scale-free, even
when the evidence was scarce at best. However,
the net result was to force us to better understand
the factors that shape network structure. For ex-
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Fig. 1. The birth of a scale-free network. (Top and Middle) The simplest process that can produce a
scale-free topology was introduced a decade ago in (6), and it is illustrated in the top two rows. Starting
from three connected nodes (top left), in each image a new node (shown as an empty circle) is added to
the network. When deciding where to link, new nodes prefer to attach to the more connected nodes, a
process known as preferential attachment. Thanks to growth and preferential attachment, a rich-gets-richer
process is observed, which means that the highly connected nodes acquire more links than those that are less
connected, leading to the natural emergence of a few highly connected hubs. The node size, which was
chosen to be proportional to the node’s degree, illustrates the natural emergence of hubs as the largest
nodes. The degree distribution of the resulting network follows the power law (Eq. 1) with exponent g = 3.
See also movies S1 to S3. (Bottom) Illustration of the growth process in the co-authorship network of
physicists. Each node corresponds to an individual author, and two nodes are connected if they co-
authored a paper together. The four images show the network’s growth at 1-month time intervals,
indicating how the network expands in time, leading to the emergence of a clear hub. Once again, the
node size was chosen to be proportional to the node’s degree. [Credit: D. Wang and G. Palla]
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ample, although the randomly bonded atoms in
amorphous materials form a fascinating network,
we now know that it does not display either the
small-world (12) or the scale-free property, thanks
to the chemical constraints the bonds must obey
(13). Lastly, the topologies of several networks of
considerable interest, like the neural-level map of
a mammalian brain, remain to be elucidated, rep-
resenting an area where we need both data and
generative models (14).

A legacy of the scale-free property is the re-
alization that the structure and the evolution of
networks are inseparable (6). Indeed, traditional
networkmodels aimed to connect a fixed number
of nodes with cleverly placed links. The scale-free
property forced us to acknowledge that networks
constantly change because of the arrival of nodes
and links (Fig. 1). In other words, to explain a
system’s topology we first need to describe how
it came into being.

The impact of network theory could have been
limited if not for a series of findings that under-
lined the perils of ignoring network topology. Take,
for example, the discovery of Romualdo Pastor-
Satorras and Alessandro Vespignani that on a scale-
free network the epidemic threshold converges to
zero (15). It has long been known that only viruses
whose spreading rate exceeds a critical threshold
can survive in the population. Whereas the spread-
ing rate captures the transmission dynamics, the
threshold is determined by the topology of the
network on which the virus spreads. Therefore,
the vanishing threshold means that in scale-free
networks evenweakly virulent viruses can spread
unopposed, a finding that affects all spreading
processes, from AIDS to computer viruses. Simi-
larly, the finding of Shlomo Havlin and collab-
orators (16) that in scale-free networks the overall
network connectivity does not vanish under
random node removal explained the exceptional
robustness of real networks to random node
failures (17). As a proof of the coherency of the
emerging theory, both of these discoveries (15, 16)
were reduced to the same mathematical property,
the diverging second moment of the degree
distribution (Eq. 1), a unique feature of scale-free
networks (6). Lately these features are of great
interest, given the increasing concern about the
vulnerability of real networks (such as power
grids and the Internet) to attack and the realiza-
tion that targeting hubs can be massively dis-
ruptive (17, 18).

It is clear that no networks seen in nature or
technology are completely random—that is, mech-
anisms beyond randomness shape their evolution.
The universality of various topological character-
istics, from degree distributions (6) to degree
correlations (19–21), motifs (22), and commu-
nities (23–25), is used as a springboard to study
diverse phenomena and to make predictions. With
that, network theory has fundamentally reshaped
our understanding of complexity. Indeed, al-
though we continue to lack a universally agreed-

on definition of complexity, the role of networks
in this area is obvious: All systems perceived to
be complex, from the cell to the Internet and from
social to economic systems, consist of an extra-
ordinarily large number of components that inter-
act via intricate networks. To be sure, we were
aware of these networks before. Yet, only recently
have we acquired the data and tools to probe their
topology, helping us realize that the underlying
connectivity has such a strong impact on a
system’s behavior that no approach to complex
systems can succeed unless it exploits the
network topology.

In many ways, the demands of a future theory
of complexity are obvious: We need to understand
the behavior of the systems that we perceive as
being complex. We need to be able to predict
how the Internet responds to attacks and traffic
jams or how the cell reacts to changes in its en-
vironment. Tomake progress in this direction, we
need to tackle the next frontier, which is to under-
stand the dynamics of the processes that take place
on networks. The problem is that we have almost
as many dynamical phenomena as there are com-
plex systems. For example, biologists study re-
action kinetics on metabolic networks; computer
scientists monitor the flow of information on com-
puter networks; and epidemiologists, sociologists,
and economists explore the spread of viruses and
ideas on social networks. Is there a chance that,
despite their diversity, these dynamical processes
share some common characteristics? I suspect
that such commonalities do exist; we just have not
yet found the framework to unveil their univer-
sality. If we do, combined with the universality of
the network topology, we may soon have some-
thing that could form the foundation of a theory
of complexity.

Can we keep the momentum and achieve this
in the next decade or so? Perhaps—in my view
the bottlenecks are mainly data driven. Indeed, the
sudden emergence of large and reliable network
maps drove the development of network theory
during the past decade. If data of similar detail
capturing the dynamics of processes taking place
on networks were to emerge in the coming years,
our imagination will be the only limitation to
progress. If I dare to make a prediction for the
next decade, it is this: Thanks to the proliferation
of the many electronic devices that we use on a
daily basis, from cell phones to Global Position-
ing Systems and the Internet, that capture every-
thing from our communications to ourwhereabouts
(26, 27), the complex system that we are most
likely to tackle first in a truly quantitative fashion
may not be the cell or the Internet but rather
society itself.

Today the understanding of networks is a com-
mon goal of an unprecedented array of traditional
disciplines: Cell biologists use networks to make
sense of signal transduction cascades and metab-
olism, to name a few applications in this area;
computer scientists are mapping the Internet and

the WWW; epidemiologists follow transmission
networks through which viruses spread; and
brain researchers are after the connectome, a
neural-level connectivity map of the brain.
Although many fads have come and gone in
complexity, one thing is increasingly clear:
Interconnectivity is so fundamental to the behav-
ior of complex systems that networks are here to
stay.
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