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Abstract

Despite recent advances in uncovering the quantitative features of stationary human activity patterns, many applications,
from pandemic prediction to emergency response, require an understanding of how these patterns change when the
population encounters unfamiliar conditions. To explore societal response to external perturbations we identified real-time
changes in communication and mobility patterns in the vicinity of eight emergencies, such as bomb attacks and
earthquakes, comparing these with eight non-emergencies, like concerts and sporting events. We find that communication
spikes accompanying emergencies are both spatially and temporally localized, but information about emergencies spreads
globally, resulting in communication avalanches that engage in a significant manner the social network of eyewitnesses.
These results offer a quantitative view of behavioral changes in human activity under extreme conditions, with potential
long-term impact on emergency detection and response.
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Introduction

Current research on human dynamics is limited to data collected

under normal and stationary circumstances [1], capturing the regular

daily activity of individuals [2,3,4,5,6,7,8,9,10,11,12,13,14,15]. Yet,

there is exceptional need to understand how people change their

behavior when exposed to rapidly changing or unfamiliar conditions

[1], such as life-threatening epidemic outbreaks [4,12], emergencies

and traffic anomalies, as models based on stationary events are

expected to break down under these circumstances. Such rapid

changes in conditions are often caused by natural, technological or

societal disasters, from hurricanes to violent conflicts [16]. The

possibility to study such real time changes has emerged recently

thanks to the widespread use of mobile phones, which track both user

mobility [2,3,6,17] and real-time communications along the links of

the underlying social network [7,18]. Here we take advantage of the

fact that mobile phones act as in situ sensors at the site of an

emergency, to study the real-time behavioral patterns of the local

population under external perturbations caused by emergencies.

Advances in this direction not only help redefine our understanding

of information propagation [19] and cooperative human actions

under externally induced perturbations, which is the main motivation

of our work, but also offer a new perspective on panic [20,21,22,23]

and emergency protocols in a data-rich environment [24].

Our starting point is a country-wide mobile communications

dataset, culled from the anonymized billing records of approxi-

mately ten million mobile phone subscribers of a mobile company

which covers about one-fourth of subscribers in a country with

close to full mobile penetration. It provides the time and duration

of each mobile phone call [7], together with information on the

tower that handled the call, thus capturing the real-time locations

of the users [3,6,25] (Methods, File S1, Fig. A). To identify

potential societal perturbations, we scanned media reports

pertaining to the coverage area between January 2007 and

January 2009 and developed a corpus of times and locations for

eight societal, technological, and natural emergencies, ranging

from bombings to a plane crash, earthquakes, floods and storms

(Table 1). Approximately 30% of the events mentioned in the

media occurred in locations with sparse cellular coverage or

during times when few users are active (like very early in the

morning). The remaining events do offer, however, a sufficiently

diverse corpus to explore the generic vs. unique changes in the

activity patterns in response to an emergency. Here we discuss four

events, chosen for their diversity: (1) a bombing, resulting in

several injuries (no fatalities); (2) a plane crash resulting in a

significant number of fatalities; (3) an earthquake whose epicenter

was outside our observation area but affected the observed

population, causing mild damage but no casualties; and (4) a

power outage (blackout) affecting a major metropolitan area ( File

S1, Fig. B). To distinguish emergencies from other events that

cause collective changes in human activity, we also explored eight

planned events, such as sports games and a popular local sports
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race and several rock concerts. We discuss here in detail a cultural

festival and a large pop music concert as non-emergency

references (Table 1, see also File S1, Sec. B). The characteristics

of the events not discussed here due to length limitations are

provided in File S1, Sec. I for completeness and comparison.

Results and Discussion

As shown in Fig. 1A, emergencies trigger a sharp spike in call

activity (number of outgoing calls and text messages) in the

physical proximity of the event, confirming that mobile phones act

as sensitive local ‘‘sociometers’’ to external societal perturbations.

The call volume starts decaying immediately after the emergency,

suggesting that the urge to communicate is strongest right at the

onset of the event. We see virtually no delay between the onset of

the event and the jump in call volume for events that were directly

witnessed by the local population, such as the bombing, the

earthquake and the blackout. Brief delay is observed only for the

plane crash, which took place in an unpopulated area and thus

lacked eyewitnesses. In contrast, non-emergency events, like the

festival and the concert in Fig. 1A, display a gradual increase in

call activity, a noticeably different pattern from the ‘‘jump-decay’’

pattern observed for emergencies. See also File S1, Figs. I and J.

To compare the magnitude and duration of the observed call

anomalies, in Fig. 1B we show the temporal evolution of the

relative call volume DV=SVnormalT as a function of time, where

DV~Vevent{SVnormalT, Vevent is the call activity during the event

and SVnormalT is the average call activity during the same time

period of the week. As Fig. 1B indicates, the magnitude of

DV=SVnormalT correlates with our relative (and somewhat

subjective) sense of the event’s potential severity and unexpected-

ness: the bombing induces the largest change in call activity,

followed by the plane crash; whereas the collective reaction to the

earthquake and the blackout are somewhat weaker and compa-

rable to each other. While the relative change was also significant

for non-emergencies, the emergence of the call anomaly is rather

gradual and spans seven or more hours, in contrast with the jump-

decay pattern lasting only three to five hours for emergencies

(Figs. 1B, File S1, Figs. I and J). As we show in Fig. 1C (see also

File S1, Sec. C) the primary source of the observed call anomaly is

a sudden increase of calls by individuals who would normally not

use their phone during the emergency period, rather than

increased call volume by those that are normally active in the area.

The temporally localized spike in call activity (Fig. 1A,B) raises

an important question: is information about the events limited to

the immediate vicinity of the emergency or do emergencies, often

immediately covered by national media, lead to spatially extended

changes in call activity [23]? We therefore inspected the change in

call activity in the vicinity of the epicenter, finding that for the

bombing, for example, the magnitude of the call anomaly is

strongest near the event, and drops rapidly with the distance r
from the epicenter (Fig. 2A). To quantify this effect across all

emergencies, we integrated the call volume over time in concentric

shells of radius r centered on the epicenter (Fig. 2B). The decay is

approximately exponential, DV (r)*exp {r=rcð Þ, allowing us to

characterize the spatial extent of the reaction with a decay rate rc

(Fig. 2C). The observed decay rates range from 2 km (bombing) to

10 km (plane crash), indicating that the anomalous call activity is

limited to the event’s vicinity. An extended spatial range

(rc&110 km) is seen only for the earthquake, lacking a narrowly

defined epicenter. Meanwhile, a distinguishing pattern of non-

emergencies is their highly localized nature: they are characterized

by a decay rate of less than 2 km, implying that the call anomaly

was narrowly confined to the venue of the event. This systematic

split in rc between the spatially extended emergencies and well-

localized non-emergencies persists for all explored events (see

Table 1, File S1, Fig. K).

Despite the clear temporal and spatial localization of anomalous

call activity during emergencies, one expects some degree of

information propagation beyond the eyewitness population [26].

Table 1. Summary of the studied emergencies and non-emergencies.

Event duration (hours) rc (km) jG0j
P

i jGi j

Emergencies 1 Bombing 1.92 2.38 750 5,099

2 Plane crash 2.17 9.98 2,104 7,325

3 Earthquake 1.42 110 32,403 83,280

4 Blackout 3.0 3.02 84,751 288,332

5 Jet scare 1.67 6.18 3,556 11,575

6 Storm 1 2.33 27.0 7,350 18,124

7 Storm 2 2.0 4.29 14,634 33,963

8 Storm 3 1.75 2.79 19,239 48,626

Non-emergencies 9 Concert 1 13.25 0.48 11,376 91,889

10 Concert 2 6.67 1.06 3,939 29,837

11 Concert 3 9.08 1.48 5,134 81,125

12 Concert 4 12.08 0.35 2,630 17,998

13 Festival 1 19.92 0.36 66,869 454,687

14 Festival 2 2.17 0.50 1,453 7,963

15 Festival 3 20.92 1.33 10,854 427,839

16 Festival 4 11.25 0.72 3,117 16,822

The columns provide the duration of the anomalous call activity (Fig. 1), the spatial decay rate rc (Fig. 2), the number of users in the event population jG0j, and the total
size of the information cascade

P
i jGi j (Fig. 3). Events discussed in the main text are italicized, the rest are discussed in the supplementary material. ‘Jet scare’ refers to a

sonic boom interpreted by the local population and initial media reports as an explosion.
doi:10.1371/journal.pone.0017680.t001
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We therefore identified the individuals located within the event

region G0ð Þ, as well as a G1 group consisting of individuals outside

the event region but who receive calls from the G0 group during

the event, a G2 group that receive calls from G1, and so on. We see

that the G0 individuals engage their social network within minutes,

and that the G1, G2, and occasionally even the G3 group show an

anomalous call pattern immediately after the anomaly (Fig. 3A).

This effect is quantified in Fig. 3B, where we show the increase in

call volume for each group as a function of their social network

based distance from the epicenter (for example, the social distance

of the G2 group is 2, being two links away from the G0 group),

indicating that the bombing and plane crash show strong,

immediate social propagation up to the third and second

neighbors of the eyewitness G0 population, respectively. The

earthquake and blackout, less threatening emergencies, show little

propagation beyond the immediate social links of G0 and social

propagation is virtually absent in non-emergencies.

The nature of the information cascade behind the results shown

in Fig. 3A,B is illustrated in Fig. 3C, where we show the individual

calls between users active during the bombing. In contrast with the

information cascade triggered by the emergencies witnessed by the

G0 users, there are practically no calls between the same

individuals during the previous week. To quantify the magnitude

of the information cascade we measured the length of the paths

emanating from the G0 users, finding them to be considerably

longer during the emergency (Fig. 3D), compared to five non-

emergency periods, demonstrating that the information cascade

penetrates deep into the social network, a pattern that is absent

during normal activity [27]. See also File S1, Figs. E, F, G, H, L,

M, N, and O, and Table A.

The existence of such prominent information cascades raises

tantalizing questions about who contributes to information

propagation about the emergency. Using self-reported gender

information available for most users (see File S1), we find that

during emergencies female users are more likely to make a call

than expected based on their normal call patterns. This gender

discrepancy holds for the G0 (eyewitness) and G1 groups, but is

absent for non-emergency events (see File S1, Sec. E, Fig. C). We

also separated the total call activity of G0 and G1 individuals into

voice and text messages (including SMS and MMS). For most

events (the earthquake and blackout being the only exceptions),

the voice/text ratios follow the normal patterns ( File S1, Fig. D),

Figure 1. Call anomalies during emergencies. A, The time dependence of call volume V (t) in the vicinity of four emergencies and two non-
emergencies (See Table 1). B, The temporal behavior of the relative call volume DV=SVnormalT of the events shown in A, where
DV~Vevent{SVnormalT, Vevent is the call volume on the day of the event (shown in red in A), and SVnormalT is the average call volume during
the same period of the week (the call volume during the previous week is shown in black in B). C, The relative change in the average number of calls
placed per user (r) and the total number of users (N) making calls from the region indicates that the call anomaly is primarily due to a significant
increase in the number of users that place calls during the events.
doi:10.1371/journal.pone.0017680.g001

Human Populations and Large-Scale Emergencies

PLoS ONE | www.plosone.org 3 March 2011 | Volume 6 | Issue 3 | e17680



indicating that users continue to rely on their preferred means of

communication during an emergency.

The patterns identified discussed above allow us to dissect

complex events, such as an explosion in an urban area preceded

by an evacuation starting approximately one hour before the blast.

While a call volume anomaly emerges right at the start of the

evacuation, it levels off and the jump-decay pattern characteristic

of an emergency does not appear until the real explosion (Fig. 4A).

The spatial extent of the evacuation response is significantly

smaller than the one observed during the event (rc~1:6 for the

evacuation compared with rc~9:0 for the explosion, see Fig. 4B).

During the evacuation, social propagation is limited to the G0 and

G1 groups only (Fig. 4C,D) while after the explosion we observe a

communication cascade that activates the G2 users as well. The

lack of strong propagation during evacuation indicates that

individuals tend to be reactive rather than proactive and that a

real emergency is necessary to initiate a communication cascade

that effectively spreads emergency information.

The results of Figs. 1–4 not only indicate that the collective

response of the population to an emergency follows reproducible

patterns common across diverse events, but they also document

subtle differences between emergencies and non-emergencies. We

therefore identified four variables that take different characteristic

values for emergencies and non-emergencies: (i) the midpoint

fraction fmid~ tmid{tstartð Þ= tstop{tstart

� �
, where tstart and tstop

are the times when the anomalous activity begins and ends,

respectively, and tmid is the time when half of the total anomalous

call volume has occurred; (ii) the spatial decay rate rc capturing the

extent of the event; (iii) the relative size R of each information

cascade, representing the ratio between the number of users in the

event cascade and the cascade tracked during normal periods; (iv)

the probability for users to contact existing friends (instead of

placing calls to strangers).

In Fig. 5 we show these variables for all 16 events, finding

systematic differences between emergencies and non-emergencies.

As the figure indicates, a multidimensional variable, relying on the

documented changes in human activity, can be used to

automatically distinguish emergency situations from non-emer-

gency induced anomalies. Such a variable could also help real-

time monitoring of emergencies [24], from information about the

Figure 2. The spatial impact of an emergency. A, Maps of total anomalous call activity (activity during the event minus expected normal
activity) for two-hour periods before ({2vtv0), during (0vtv2), and after (2vtv4) the bombing. The color code corresponds to the total changeP

t DV (t), where the sum runs over the particular time period. B, Changes in call volume in regions at various distances r from the event epicenter.
Note that the peak of the call volume anomaly for the bombing within the observed 1vrv5 km region is delayed by approximately 10 minutes
compared to the rv1 km epicenter region. No call anomaly is observed for rw10 km. The earthquake covers a large spatial range so we instead
choose three event regions A–C, at distances of 310 km, 340 km, and 425 km from the seismic epicenter (which was outside the studied region). C,
To measure the distance dependence of the anomaly, we computed the total anomalous call volume in B before (Dtvtv0) and after (0vtvDt)
each event as a function of the distance r, revealing approximately exponential decay, DV (r)*exp {r=rcð Þ. Non-emergencies are spatially localized,
with rcv2 km.
doi:10.1371/journal.pone.0017680.g002
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size of the affected population, to the timeline of the events, and

could help identify mobile phone users capable of offering

immediate, actionable information, potentially aiding search and

rescue.

Rapidly-evolving events such as those studied throughout this work

require dynamical data with ultra-high temporal and spatial

resolution and high coverage. Although the populations affected by

emergencies are quite large, occasionally reaching thousands of users,

due to the demonstrated localized nature of the anomaly, this size is

still small in comparison to other proxy studies of human dynamics,

which can exploit the activity patterns of millions of internet users or

webpages [13,14,15,27]. Meanwhile, emergencies occur over very

short timespans, a few hours at most, whereas much current work on

human dynamics relies on longitudinal datasets covering months or

even years of activity for the same users (e.g. [3,6,9]), integrating out

transient events and noise. But in the case of emergencies, such

transient events are precisely what we wish to quantify. Given the

short duration and spatially localized nature of these events, it is vital

to have extremely high coverage of the entire system, to maximize the

availability of critical information during an event. To push human

dynamics research into such fast-moving events requires new tools

and datasets capable of extracting signals from limited data. We

believe that our research offers a first step in this direction.

In summary, similar to how biologists use drugs to perturb the

state of a cell to better understand the collective behavior of living

systems, we used emergencies as external societal perturbations,

helping us uncover generic changes in the spatial, temporal and

social activity patterns of the human population. Starting from a

large-scale, country-wide mobile phone dataset, we used news

reports to gather a corpus of sixteen major events, eight
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Figure 3. Social characteristics of information cascades. A, Changes in call volume for users directly affected by the event (G0), users that
receive calls from G0 but are not near the event (G1), users contacted by G1 but not in G1 or G0 (G2), etc. For the bombing and plane crash,
populations respond very rapidly, within minutes. B, The total amount of anomalous call activity in A before (during {Dtvtv0) and after (during
0vtvDt) the event for each user group Gi quantifies the impact on the social network. We see that information propagates deeply into the social
network for the bombing and plane crash. C, Top panel: the contact network formed between affected users during the bombing. Bottom panel: the
call pattern between users that are active during the emergency during the previous week, indicating that the information cascade observed during
the bombing is out of the ordinary. D, The distribution of shortest paths within the contact network quantifies the anomalous information cascade
induced by the bombing.
doi:10.1371/journal.pone.0017680.g003
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unplanned emergencies and eight scheduled activities. Studying

the call activity patterns of users in the vicinity of these events, we

found that unusual activity rapidly spikes for emergencies in

contrast with non-emergencies induced anomalies that build up

gradually before the event; that the call patterns during

emergencies are exponentially localized regardless of event

details; and that affected users will only invoke the social network

to propagate information under the most extreme circumstances.

When this social propagation does occur, however, it takes place

in a very rapid and efficient manner, so that users three or even

four degrees from eyewitnesses can learn of the emergency within

minutes.

These results not only deepen our fundamental understanding

of human dynamics, but could also improve emergency response.

Indeed, while aid organizations increasingly use the distributed,

real-time communication tools of the 21st century, much disaster

research continues to rely on low-throughput, post-event data,

such as questionnaires, eyewitness reports [28,29], and commu-

nication records between first responders or relief organizations

[30]. The emergency situations explored here indicate that, thanks

to the pervasive use of mobile phones, collective changes in human

activity patterns can be captured in an objective manner, even at

surprisingly short time-scales, opening a new window on this

neglected chapter of human dynamics.

Materials and Methods

Dataset
We use a set of anonymized billing records from a western

european mobile phone service provider [7,3,6]. The records cover

approximately 10M subscribers within a single country over 3 years

of activity. Each billing record, for voice and text services, contains

the unique identifiers of the caller placing the call and the callee

receiving the call; an identifier for the cellular antenna (tower) that

handled the call; and the date and time when the call was placed.

Coupled with a dataset describing the locations (latitude and

longitude) of cellular towers, we have the approximate location of

the caller when placing the call. For full details, see File S1, Sec. A.

Identifying events
To find an event in the mobile phone data, we need to determine

its time and location. We have used online news aggregators,

particularly the local news.google.com service to search for news

stories covering the country and time frame of the dataset.

Keywords such as ‘storm’, ‘emergency’, ‘concert’, etc. were used

to find potential news stories. Important events such as bombings

and earthquakes are prominently covered in the media and are easy

to find. Study of these reports, which often included photographs of

the affected area, typically yields precise times and locations for the

Figure 4. Analyzing a composite event (evacuation preceding an explosion). A, Call activity increases during the evacuation ({1vtv0)
but levels off after the initial warning, until the explosion at t~0 causes a much larger increase in call activity. B, Spatially, the evacuation causes a
sharply localized activity spike (rc~1:6 km), but the explosion increases the spatial extent dramatically (rc~9:0 km). C–D, The evacuation only
activates the G0 (eyewitness) and G1 groups, meaning that information fails to propagate significantly beyond the initial group and their immediate
ties. However, the blast not only leads to a further increase in call activity in the G0 and G1 groups, but also triggers the second neighbors G2 .
doi:10.1371/journal.pone.0017680.g004
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events. Reports would occasionally conflict about specific details,

but this was rare. We take the reported start time of the event as t~0.

To identify the beginning and ending of an event, tstart and tstop,

we adopt the following procedure. First, identify the event region

(a rough estimate is sufficient) and scan all its calls during a large

time period covering the event (e.g., a full day), giving Vevent(t).
Then, scan calls for a number of ‘‘normal’’ periods, those modulo

one week from the event period, exploiting the weekly periodicity

of V (t). These normal periods’ time series are averaged to give

SVnormalT. (To smooth time series, we typically bin them into 5–

10 minute intervals.) The standard deviation s Vnormalð Þ as a

function of time is then used to compute z(t)~DV (t)=s Vnormalð Þ.
Finally, we define the interval tstart,tstop

� �
as the longest

contiguous run of time intervals where z(t)wzthr, for some fixed

cutoff zthr. We chose zthr~1:5 for all events.

For full details, see File S1, Sec. B.

Supporting Information

File S1 Supplementary text and figures.

(PDF)
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