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We introduce and investigate the scaling properties of a random walker that moves ballistically on a
two-dimensional square lattice. The walker is scattered~changes direction randomly! every time it reaches a
previously unvisited site, and follows ballistic trajectories between two scattering events. The asymptotic
properties of the density of unvisited sites and the diffusion exponent can be calculated using a mean-field
theory. The obtained predictions are in good agreement with the results of extensive numerical simulations. In
particular, we show that this random walk is subdiffusive.@S1063-651X~96!04007-X#

PACS number~s!: 05.20.2y, 05.40.1j, 05.50.1q

I. INTRODUCTION

Random motion has been a subject of constant interest in
the history of modern physics. Since critical phenomena
made us appreciate the presence of power laws in nature,
random walks became a paradigm of various models involv-
ing stochastic motion and disorder@1#. In recent years, much
attention has been focused oninteracting random-walkmod-
els that differ from traditional random-walk models, such as
Brownian motion~BM! @2#, in that the walker’s motion at a
given time depends on its previous trajectory. Examples in-
clude the self-avoiding random-walk model@3#, which de-
scribes the statistics of polymer growth, the ‘‘true’’ self-
avoiding random walk@4#, in which the probability of
stepping to a previously visited site depends on the number
of times that the site has been visited in the past, the inter-
acting walk of Stanleyet al. @5#, and the Domb-Joyce model
@6#. For a comparative study of these models, see Duxbury
et al. @7#.

In order to understand the scaling properties of random
walks, one usually studies the time dependence of the mean-
square displacement~end-to-end distance of the walk after
t time steps!, ^R2(t)&, and the mean number of distinct sites
visited, ^S(t)&. For BM, these quantities behave asymptoti-
cally as^R2(t)&;t and ^S(t)&;t/ lnt @8#.

Using the critical exponentn, defined by^R2(t)&;t2n,
random walks can be classified according to their diffusive
behavior. Models for which self-intersections are unfavored
are superdiffusive, withn.1/2. Including self-intersecting
dynamics favors subdiffusive behavior, for whichn,1/2.

In this paper we introduce and study a model describing
the ballistic motion of a non-Markovian random walker,
which we call the ballistic random-walk~BRW! model. We
investigate how the ballistic trajectory affects the dynamics
of the motion, the scaling exponents, and the number of vis-
ited sites. The scaling exponents are calculated using a

mean-field theory and the obtained predictions compared to
numerical simulations.

The model is defined on a two-dimensional~2D! square
lattice with sizeL3L ~generalization to higher dimensions
and other geometries is straightforward!. At time t50, each
lattice site is occupied with a particle of typeA, except for
the site at the center of the lattice, where we place a random
walker ~particleB). The walkerB moves ballistically on the
surface, following a straight trajectory along thex or y di-
rection. WhenB meets anA particle, it desorbs it from the
surface, leaving behind an empty site. After every desorption
event, the walkerB changes its direction of motion ran-
domly, continuing its ballistic motion in any of the four pos-
sible directions starting from the newly emptied site. Alter-
natively, the model described corresponds to the reaction-
diffusion process of typeA1B→B, for which the density of
the diffusingB particles is constant (1/L2), while the number
of A particles decreases monotonically from the initial value,
L2 @9#.

The model has two ingredients that make analytical
progress particularly difficult. First, the model is neither de-
terministic nor completely random, and therefore the con-
ventional approaches available to study random or determin-
istic systems need to be combined somehow. Second, the
dynamics is non-Markovian because the distribution of ran-
dom scatterers (A particles! changes with time.

We now present numerical calculations and theoretical
arguments to understand the diffusion of particleB. We
carry out simulations on square lattices of linear sizes up to
L522 528. Each simulation ends when theB particle
reaches the boundary. In Fig. 1~a!, we show the surviving
particles~unvisited sites! after 109.75 time steps@10#, when
theB particle has not yet reached the boundary. We observe
that, for long enough times (t.107), the visited sites form a
roughly circular cluster. Moreover, the density of visited
sites is close to 1 for a large area around the starting point.
Thus, the connected cluster formed of the visited sites is
compact, in contrast to fractal clusters generated by BM, as
illustrated in Fig. 1~b!.

II. SUBDIFFUSIVE BEHAVIOR

To investigate the scaling properties of the system, we
evaluatê R2(t)& for the walkerB. As shown in Fig. 2, we
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find that, for early times, the diffusion follows Einstein’s law
(n51/2) @2#. This behavior dominates the scaling up to
102 time steps. However, the BRW is asymptotically subdif-
fusive: for time scales larger than 105.5, we observe a cross-
over to the subdiffusive regime:^R2(t)&;t0.6660.02.

In order to understand the crossover behavior, we first
discuss qualitatively the motion of the walker. At the early
stages of the diffusion process, the density ofA particles,
r(L,t), is very close to 1. Accordingly, the probability that
the walkerB hits anA particle ~and consequently is scat-
tered! is very high, and therefore its trajectory is very similar
to that of BM. However,r(L,t) decreases with time and the
probability that the walker reaches an empty site in its evo-
lution increases. Thus, between two scattering events, the
walker has longer and longer distances to go ballistically.
The set of visited sites is connected, and a closed contour of
nondesorbedA particles defines the border of the cluster of

visited sites. The asymptotic properties of the model depend
essentially on the topology of this cluster. At this point we
need to make two observations, which form the basis of our
theoretical arguments:~1! For large times the cluster of vis-
ited sites is approximately circular.~2! Deviations from cir-
cularity generate only~asymptotically negligible! correc-
tions. Next we derive the asymptotic scaling behavior of the
cluster of empty sites based on these two properties.

Let us assume that, at a particular time, a circular cluster
with radiusR and areaS5pR2 has been formed. Whenever
the walker reaches the circular border, anA particle is de-
sorbed. In the next time step, the walker can either~i! bounce
back, inverting its direction and traveling across the cluster
without scattering until it reaches the opposite wall,~ii ! be
scattered in a direction perpendicular to the border normal,
or ~iii ! keep the same direction and move one site deeper in
the region of occupied sites. The time required to generate a
change dS in the circle area obeys@11# dt/dS
5a(R)1bR, where b is a proportionality constant
(0,b<1/2). The contributions toa(R) depend on powers
of R smaller than 1 and, therefore, are negligible in the large
R limit. After integrating dt/dS, we obtain t;R3, or
R2;t2/3, corresponding to subdiffusive behavior with
n51/3. This agrees well with the numerical results
n50.3360.01 @12#, shown in Fig. 2. This good coincidence
supports our starting observation that the walker spends most
of its time traveling across the empty central region. Conse-
quently, there is a change in the dynamics of the system,
corresponding to a crossover from a diffusive regime with
n;1/2, in the early stages of the evolution, induced by the
Brownian-like motion, to an asymptotic subdiffusive behav-
ior with n51/3.

III. DENSITY OF SURVIVING PARTICLES

We definers(L) as the final density of unvisited sites,
i.e., the density ofA particles when the walker, starting at the
geometrical center att50, reaches the boundary of the

FIG. 1. The distribution of the visited~white! and unvisited
~black! sites in a 22528322528 square lattice for~a! the ballistic
random walker and~b! the standard random walker~Brownian mo-
tion!, after 109.75 and 107.75 time steps, respectively. In both cases,
the walker started from the geometrical center of the figure.

FIG. 2. Mean-square displacement,^R2(t)&, as a function of
time for the ballistic random walker. The short time behavior is
diffusive, @^R2(t)&;t, dashed line#, followed by a crossover to a
subdiffusive regime@^R2(t)&;t0.6660.02, continuous line#. Aver-
ages over 20 runs were taken.
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L3L square lattice. As shown in Fig. 3, for the BRW,
rs(L) exhibits a broad plateau centered atL5102, after
which it decreases.

To clarify this behavior, we again have to return to our
earlier picture, that in the asymptotic regime the border
forms a circle of radiusR. However,R increases with time.
In the model, the simulation is stopped, and thusrs(L) is
calculated when the particle first reaches the wall of the
square lattice. In the mean-field description described above,
this corresponds to the circle reaching the boundary of the
lattice. At this point the circle has a radiusL/2, and an area
pL2/4. Since we assume that all particles inside the circle
were removed, the number of surviving sites is given by
L22pL2/4, giving the asymptotic density asrs*512p/4.
However, this limit is approached very slowly byrs(L);
rs* is reached only when the border width is negligible com-
pared with the cluster radius. Unfortunately, system size
limitations do not allow us to observe the asymptotic behav-
ior of the density~the largest system size, 22528322528, is
already large compared to sizes studied for similar problems
in computational physics!. However, as Fig. 3 indicates, the
density indeed shows a tendency to decrease towards the
predicted asymptotic value,rs* .

It is interesting to compare the observed dynamics with
that of the BM in 2D. In the latter, the number of distinct
sites visited behaves asymptotically ast/ ln(t) @8#. Therefore,
the density of remaining particles in a circle of radius
R;At goes as 12g/ ln(t), with g constant. Thus,rs(L) for
the BM approaches 1 for largeL. It is remarkable that a
simple change in the dynamical rule, i.e., that there is only
scattering on the~previously! unvisited sites, changes enor-
mously the density of visited places forL→`, going from
0 for the BM case to a finite constant for the BRW. Another
difference when comparing with BM in 2D is the formation
of a compact, almost circular cluster of visited sites.

IV. BORDER WIDTH

In the previous arguments, we assumed that the walker
generated a perfect circle with a smooth boundary. In fact,
the border width has some non-negligible roughness as can

be seen in Fig. 1~a!. This roughness increases with time, and
if this increase is fast enough, it may invalidate our mean-
field assumption that asymptotically the border is well ap-
proximated with a smooth circle. To validate our mean-field
calculation, it is necessary to show that asymptotically the
border width is negligible compared toR. For this, we study
the radial distribution of unvisited sites,rR(r ,L,t), which is
obtained from radially averaging time snapshots of the 2D
density distribution of unvisited sites, as the one shown in
Fig. 1~a!. Then we compute the partial derivative of
rR(r ,L,t), as a function of the radial coordinater , with the
origin at the geometrical center~starting point!. This deriva-
tive is only different from 0 at the boundary between visited
and unvisited sites, and has a maximum at the radial distance
for which the variation in the density of unvisited sites is the
largest. To characterize the size of the interval with nonvan-
ishing ]rR /]r , we calculate the full width at half maximum
~FWHM! of this derivative. A relevant quantity for our prob-
lem is the ratio between the FWHM and the distance of the
boundary between visited and unvisited sites to the origin,
r b(L,t), defined by rR(r b ,L,t)50.5. At a distance
r b(L,t), the radial densities of visited and unvisited sites are
equal, i.e., 0.5. We find that the ratio FWHM/r b decreases in
time. Therefore, for long times, the thickness of the bound-
ary becomes negligible in comparison withr b , as we as-
sumed in the mean-field theory developed above.

Note that the region of nonvanishing]rR /]r corresponds
to two different sorts of borders: those of small clusters of
unvisited sites trapped inside the connected cluster of visited
sites, and the single border between the cluster of visited
sites and the outside 2D bulk of unvisited sites. To determine
numerically and/or analytically the statistical properties of
this single border would be an interesting task for future
work. In particular, it would be worthwhile to investigate if
the roughening of the boundary can be described by con-
tinuum theories normally used to describe the roughening of
various interfaces, and to identify the particular universality
class to which it belongs@13#.

V. CONCLUSIONS

We have introduced and investigated a random-walk
model in which the walker is scattered only when a site is
visited by the walker for the first time. Subsequent visits to
these sites have no effect on the walker. As a result, the
walker follows straight~ballistic! trajectories between ran-
dom changes in its direction. Extensive numerical simula-
tions on a 2D square lattice have been carried out to show
that the motion is subdiffusive. A mean-field theory is devel-
oped that can account for the subdiffusive behavior and for
the asymptotic density of unvisited sites.
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FIG. 3. Density of unvisited sites~survivingA particles! for the
ballistic random walker. The dashed line shows the asymptotic den-
sity 12p/4 predicted by the mean-field theory asL→`. Statistical
averaging in the simulations ranges from 105 runs for the smallest
lattice sizes to 64 runs for the largest (L522528).
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