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Maximum angle of stability in wet and dry spherical granular media

Réka Albert, István Albert, Daniel Hornbaker, Peter Schiffer, and Albert-La´szló Barabási
Department of Physics, University of Notre-Dame, Notre-Dame, Indiana 46556

~Received 9 April 1997!

We demonstrate that stability criteria can be used to calculate the maximum angle of stabilityum of a
granular medium composed of spherical particles in three dimensions and circular disks in two dimensions.
The predicted angles are in good agreement with the experimental results. Furthermore, we determine the
dependence ofum on cohesive forces, applying the results to wet granular material by calculating the depen-
dence ofum on the liquid content of the material. We have also studied wet granular media experimentally and
find good agreement between the theory and our experimental results.@S1063-651X~97!50512-5#

PACS number~s!: 83.70.Fn, 05.90.1m, 46.10.1z, 68.45.2v
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Granular materials display a variety of behavior that d
tinguishes them from other forms of matter. Unlike solid
granular media conform to the shape of a container and
flow if the container is tilted sufficiently. Unlike liquids
however, a granular material is stable when its containe
tilted slightly as long as the top surface is at a slope less t
the angle of maximal stabilityum . When the slope is in-
creased aboveum , grains begin to flow and an avalanche
particles occurs, the angle of the pile decreasing to the a
of reposeu r . However, instead of uniform motion through
out the sample, all of the motion occurs in a relatively th
~10 grains! boundary layer at the surface@1#.

Experimental measurements of the angle of repose@2–4#
reveal thatu r depends strongly on the shape and surf
roughness of the grains. The typical measured value foru r is
.22° for smooth spheres, butu r can attain 64° for materials
containing rough, irregular particles. Cohesion betwe
grains can also dramatically change the physical prope
of a granular material, includingu r andum @5#. Such cohe-
sion is commonly caused by the presence of a liquid in
material that forms interstitial bridges resulting in attracti
forces between grains.

While many experimental measurements ofu r and um
have been made for different materials, few theoretical
sults are available regarding the numerical values of th
angles. The most detailed theoretical predictions are p
vided by molecular dynamics studies@6–8#, which have pro-
foundly improved our understanding ofu r , but have not
provided a simple way to calculateu r or um .

In this paper we demonstrate that stability criteria can
used to calculateum of spherical particles in three dimen
sions ~3D! and circular discs in two dimensions~2D!. The
predicted angles are in good agreement with the experim
tal results. Furthermore, we determine the dependence oum
on cohesive forces, applying the results to wet granular
terial for which we have determined the dependence ofum
on liquid content. We have also studied wet granular me
experimentally, and we find good agreement between
theory and our experimental results.

Stability criteria. The basic idea of our approach is be
illustrated in 2D. Consider a randomly packed sandpile
disks with equal radii, as shown in Fig. 1. If we add o
more particle to the pile on a randomly chosen local surf
minimum~see Fig. 1!, its stability will depend entirely on the
561063-651X/97/56~6!/6271~4!/$10.00
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configuration of the two supporting particles underneath
@9#. To quantify the stability criteria we define the local slop
of the sandpileu as being the tangent to the two supporti
spheres. Ifu is small, the newly added particle is stabl
while if u is larger than a critical valueuc , it is unstable and
will roll down, starting an avalanche on the surface. F
disks with equal radii, simple geometrical considerations
dicateuc530°.

This argument can be generalized to 3D, but the geom
is more complicated: we have to study the arrangemen
three spherical particles supporting a fourth sphere. To s
plify the presentation we consider spheres with equal ra
but generalizing to an arbitrary size distribution is straig
forward. Again, the local slope of the sandpileu is defined as
the angle between the tangent plane to the spheres an
horizontal plane~see Fig. 2!. For u50 the top sphere is
stable, being supported by the three base spheres. Incre
u, the top sphere remains in equilibrium foru,uc(f),
whereuc(f) depends on the relative orientation of the ba
spheres, quantified by the anglef ~see Fig. 2!.

Without any cohesive or frictional forces, the top sphe
is stable only while the gravitational force vector poin
within the projection of the base triangle on the horizon
plane. This criterion gives the maximum angle of stability
a function off,

uc~f!5arctan
1

2A2 cos~p/32f!
. ~1!

FIG. 1. ~a! Schematic illustration of the surface of a two
dimensional sandpile and~b! the local surface configuration when
new particle~filled circle! is added to the pile. The stability of th
newly added particle depends on the local slope of the surface
R6271 © 1997 The American Physical Society



b
o

m
ic
-
he
-

te

e
am
le
-

ug
ns
ta

e
by

g
-

ne

bu
y.

re

or
l fi

to

nt

n

ef.
,

eri-

r
s of
ting
on a
can
he
cle
no
us

ra-
late

con-
s,
t

al

s
icles
an-
he

re
n-
res

pe
re
as

re

tal
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Since the coordination of the base triangle, described
f, is random on a pile, one expects that the critical angle
a randomly packed pile will be given by the averageuc(f),
i.e., uc5 (3/p) *0

p/3uc(f)df. After performing this integral
numerically we obtainuc523.4°.

Beads used in actual experiments always have some
croscopic surface roughness. If we consider that the part
after loosing its static stability, is still immobile until it over
comes a static rolling friction force between itself and t
supporting particle,uc will be increased by a correction pro
portional to arctan(m), wherem is the coefficient of rolling
friction.

The question now arises as to whether we can associauc
with eitheru r or um . Our calculated value ofuc corresponds
to the angle at which an ideal pile becomes unstable, wh
by ideal pile we mean that all its surface beads have the s
local slope, and that the orientation of the base triang
defined byf, is completely random and uniformly distrib
uted. In a real sandpile, there is always some surface ro
ness, and the local slopes vary along the surface. Co
quently, the local surface configuration is defined by the to
slope,uT5uav1du, whereuav is the average slope of th
pile, anddu is the local variation of the slope generated
the surface roughness. In this pictureum is the angle at which
we have the first local configuration satisfyin
um1du.uc(f). For a finite pile, where each local configu
ration has a certain probability to appear,um is random, and
its variance and average value is defined by the random
in du ~controlled by the surface roughness! and inf. For a
stationary pile one expects some nontrivial coupled distri
tion P(du,f), which could be determined experimentall
This distribution justbeforean avalanche providesum , and
right after the avalanche providesu r . In calculatinguc by
averaging over all values off, we have assumed that~i! f
and du are decoupled,~ii ! f is uniformly distributed be-
tween 0 andp/3, and ~iii ! the pile is not rough, i.e., the
distribution of du is a d function. These assumptions a
equivalent to neglecting fluctuations in the pile, and thusuc
represents amean fieldapproximation forum . The distribu-
tion P(du,f) could be determined either experimentally
using molecular-dynamics simulations, and if an empirica

FIG. 2. ~a! In three dimensions a newly added particle~top
sphere! is supported by three surface particles. The local slo
denoted byu, is the angle between the plane tangent to the th
supporting sphere and the horizontal plane. The angle is incre

by rotating the inclined plane around the axisx̂. ~b! Top view of the
four spheres. The orientation of the triangle defined by the th
supporting particles is characterized by the anglef, related to the
angle shown in the figure asf5 p/32f8, where 0,f,p/3 .
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for this function becomes available, that could be used
calculate corrections to the mean field resultuc , and explic-
itly evaluate bothu r andum .

The obtained mean field predictions foruc agree rather
well, however, with experimental measurements ofu r and
um , both for disks in 2D and spheres in 3D. The pertine
experiments are summarized in Table I. Reference@10# pro-
videsum533° in 2D, only slightly larger than our predictio
um530°. Similarly, the dynamical angleu.30° given by
the rotating drum experiment for low rotation speed in R
@11# coincides with our result. As Table I indicates, in 3D
with one exception,u r.22°, indeed only slightly smaller
than our prediction ofuc523.4°.This difference betweenuc
and the experimental values is consistent with the exp
mentally observed difference betweenu r andum for spheri-
cal particles@12#.

The slightly higher value reported by Ref.@3# can be at-
tributed to friction. However, we can identify anothe
mechanism that could increase the experimental value
um : we have assumed so far that in 3D the three suppor
particles are close packed, i.e., they touch each other. Up
detailed inspection of the surface of a granular pile one
observe that this rarely happens: typically, only two of t
supporting particles touch each other, while the third parti
of the base triangle is further away, having only one or
contact at all with the other two supporting spheres, th
increasinguc . Such correctionscan be includedinto our
calculation by studying the statistics of the base configu
tions in real sandpile, and using these statistics to recalcu
theuc . Finally, experiments withnonsphericalparticles give
typically much larger values forum and u r . This effect is
expected, since, for example, stacked pentagons have
figurations that will stay stable for much larger slope
thereby increasingum . Indeed, experiments find tha
u r537° and um545° for pentagons in 2D@10#, while
u r53362° for real sand in 3D, constituted by nonspheric
particles@2#.

Cohesive forces.In the following we extend our result
to the case when cohesive forces act between the part
@13#. We have performed experiments to investigate the tr
sition from dry to wetted granular media by measuring t
angle of repose of spherical polystyrene beads~diameter
0.860.2 mm! by the draining crater method with apertu
diameter of 2.5 cm@2#. These measurements were also co
ducted after small quantities of oil were added to the sphe
with liquid content t liq varying from zero to a maximum
average coating thickness of 28 nm~four orders of magni-
tude less than the radius of the beads!. Details of these ex-
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TABLE I. Comparison between the theoretical and experimen
results for smooth noncohesive particles.

D Material u r um uc ~theory! Reference

2 Disks 2461° 33° 30° 10
2 Plastic disks 30° 30° 11
3 Glass beads 2262° 23.4° 18
3 Glass beads 2362° 23.4° 19
3 Glass beads 2265° 23.4° 19
3 Polystyrene beads 2261° 23.4° this work
3 Glass beads 26° 28.6° 23.4° 3
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periments will be published elsewhere@15#. When no oil was
added to the spheres, we foundu r(t liq50).22°, in good
agreement with previous measurements~see Table I!. As Fig.
4 shows,u r increased very rapidly witht liq . The dependence
of u r on t liq is nearly linear up to the regime where clumpin
occurs, preventing an accurate determination ofu r @15#.

In the presence of cohesive forces acting between
beads, there are several forces acting on the top spher
weight, normal repulsive and cohesive forces at each con
with another sphere, and frictional forces. The maxim
angle of stability is given by the condition of force equilib
rium, and it is the solution of the equation

G

F
5

sinb2

sin~g11g2!
S sing2

tan~b12 f !
1

sing1

tan~b32 f !
D 2cosb2 ,

~2!

where

cosb i5
A3

3
@A2cosu2sin~f1a i !sinu#, ~3!

cosg15
sin2b11sin2b21sin2u sin2f

2 sinb1 sinb2

, ~4!

FIG. 3. The dependence ofuc ~in degrees! on the cohesive force
as predicted by Eq.~2!. HereF/G is the fraction between the co
hesive force and the weight of the top sphere.
e
its
ct
l

cosg25

sin2b21sin2b31cos2S u2
p

6 D sin2f

2 sinb2 sinb3

, ~5!

with i 51,2,3,a152 p/2, a25 p/6, anda35 p/3 ~see Fig.
3!. Here G is the weight of one grain,F is the cohesive
force, andf is the friction angle@ f 5arctan(m)#.

The expression~2! can be used to calculateuc in the
presence of cohesive forces, and thus to describe quan
tively the transition from dry to wet granular media. But fo
this we first need to calculate the magnitude of the liqu
induced cohesive forceF, and its dependence on the thic
ness of the liquid layert liq . The force between two particle
connected by a liquid bridge,

F52prs cosc2pr 2Dp, ~6!

consists of a surface tension term acting at the wetting
rimeter 2pr and a term arising from the capillary pressu
Dp5s@(1/r2)21/r1# in the liquid @see Fig. 5~a!#. Heres is
the surface free energy of the liquid-vapor interface,r1 and
r2 are the radii of curvature of the liquid bridge. The anglec
is related to the wetting angle,cw , by the relation
c5(p/2)2cw2arcsin(r/R), whereR is the radius of curva-

FIG. 4. Experimental measurement ofu r as a function of oil
content for two types of oil. Note the dramatic increase inu r with
only a nanometer scale coating of oil. The solid curve is a fit of o
model to the data where the only fitting parameter is the volume
oil in the intergrain bridges.
eres,
FIG. 5. A schematic of the liquid bridge at the particle-particle contact region:~a! sphere-sphere contact, assuming ideal, smooth sph
~b! cone-plane contact, for grains that are microscopically rough.
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R6274 56RÉKA ALBERT et al.
ture of the solid surface. The strength of the cohesive fo
depends on the geometry of the contact between the
spheres. As a first approximation, one is tempted to cons
an ideal sphere-sphere contact@Fig. 5~a!#. However, in the
case where the spheres are in direct physical contact,F will
decrease as the liquid content in the bridges increases@16#.
Since one expects@based on Eq.~2!# that with increasingF
the angle uc also increases, ideal sphere-sphere con
would imply that increasing the liquid content decreasesuc ,
and consequently the repose angle@16#, contradicting the
experimental result of Fig. 4. This apparent paradox is
solved by incorporating the surface roughness of the in
vidual particles, which prevents ideal sphere-sphere con
Indeed, the surface of real granular particles is rough, and
contact is better approximated as a cone-plane type@see Fig.
5~b!#. The beads used in the experiment have a surf
roughness'mm, much larger than the average oil thickne
on the beads. Thus, at the length-scale set byt liq the surface
of the beads is very rough, supporting the applicability of
cone-plane contact.

In the cone-plane case the adhesive force increases m
tonically with the liquid content, asF5g(d)Vbridge

1/3 , where
the angled is defined in Fig. 5~b!, Vbridge is the volume of the
liquid bridge and the functiong depends only ond @16#. We
have taken the half-angles of the cones in the interval
,d,60°. Since the functiong(d) does not vary strongly in
this interval, we used its average value in our calculation

To fit to the experimental results, we must calculate
volume of a liquid bridge, which in turn will give the cohe
sive forceF. We could estimateVbridge assuming that the
liquid uniformly coats the surface of the beads; howev
ion
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since the surface of the beads is rough, considerable qu
ties of liquid are in the ‘‘valleys’’ of the bead’s landscap
To proceed, we assume that the volume of the liquid brid
Vbridge is an unknown parameter, and we calculate it fitti
the theoretical curve to the experimental results@17#. Indeed,
as is shown in Fig. 4, usingVbridge53310217 m3 for the
maximum t liq , the fit to the experiment is excellent, repr
ducing not only the long asymptotic linear part, but also t
deviation from linearity for smallt liq .

It is important to note that this is aone parameterfit, that
fixes only one point~that with maximumt liq) to the experi-
mental results, the rest of the curve being completely de
mined by this single parameter. Our fitted value ofVbridge
should be compared with the average volume of liquid o
bead’s surface ofV.5.5310214 m3, indicating that the ac-
tual volume of a liquid bridge is a factor of 1000 small
than the average liquid content on a bead, i.e., a high frac
of the liquid is ‘‘passive,’’ not contributing to the cohesiv
forces between the beads. This is expected since the co
regions between the beads are small relative to their t
bead surface area.

In conclusion, by considering the stability of the surfa
of a granular pile, we have presented the first analytical c
culation of the critical angle in a granular medium and ide
tified its relation to the repose angle and the maximum an
of stability. We have included the effects of cohesive forc
and we find good agreement with experimental data for b
dry and wet material.
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CAREER Grant No. NSF/DMR 97-01998.
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