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Abstract
The observation that disease associated proteins often interact with each other has fueled
the development of network-based approaches to elucidate the molecular mechanisms of
human disease. Such approaches build on the assumption that protein interaction networks
can be viewed as maps in which diseases can be identified with localized perturbation with-
in a certain neighborhood. The identification of these neighborhoods, or disease modules,
is therefore a prerequisite of a detailed investigation of a particular pathophenotype. While
numerous heuristic methods exist that successfully pinpoint disease associated modules,
the basic underlying connectivity patterns remain largely unexplored. In this work we aim to
fill this gap by analyzing the network properties of a comprehensive corpus of 70 complex
diseases. We find that disease associated proteins do not reside within locally dense com-
munities and instead identify connectivity significance as the most predictive quantity. This
quantity inspires the design of a novel Disease Module Detection (DIAMOnD) algorithm to
identify the full disease module around a set of known disease proteins. We study the per-
formance of the algorithm using well-controlled synthetic data and systematically validate
the identified neighborhoods for a large corpus of diseases.

Author Summary
Diseases are rarely the result of an abnormality in a single gene, but involve a whole cas-
cade of interactions between several cellular processes. To disentangle these complex inter-
actions it is necessary to study genotype-phenotype relationships in the context of protein-
protein interaction networks. Our analysis of 70 diseases shows that disease proteins are
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not randomly scattered within these networks, but agglomerate in specific regions, sug-
gesting the existence of specific disease modules for each disease. The identification of
these modules is the first step towards elucidating the biological mechanisms of a disease
or for a targeted search of drug targets. We present a systematic analysis of the connectivi-
ty patterns of disease proteins and determine the most predictive topological property for
their identification. This allows us to rationally design a reliable and efficient Disease Mod-
ule Detection algorithm (DIAMOnD).

Introduction
In the recent years, there is increasing evidence that proteins associated with a particular dis-
ease have distinct interactions within theHuman Interactome, representing the cellular net-
work of all physical molecular interactions [1–7]. The pathobiological properties of a disease
and its clinical manifestations can be linked to perturbations within these disease neighbor-
hoods, or disease modules [8]. With recent advances in genome-wide disease gene association
[9] and high-throughput Interactome mapping [10] we can already pinpoint the approximate
location for some disease modules (Fig. 1A). For many diseases, however, a considerable frac-
tion of their disease associations remain unknown [11]. In this paper, we propose a network-
based methodology to uncover the disease module associated with a particular phenotype. The
algorithm is based on a systematic analysis of the network properties of known disease proteins
across 70 diseases, revealing that instead of connection density the connectivity significance is
the most predictive quantity characterizing their interaction patterns. This quantity allows us
to systematically explore the local network neighborhood around a given set of known disease
proteins, helping us identifying promising new disease protein candidates.

Results
Interaction patterns of disease proteins within the Interactome
We started by compiling a comprehensive list of experimentally documented molecular inter-
actions in human cells as described in [12] (see Methods). We also curated a list of 70 well-
characterized complex diseases (Table 1) and their known associated proteins from OMIM
[13] and GWAS [9] (see Methods). In total, we obtained 141,296 interactions between 13,460
proteins, 1,531 of which are associated with one or more diseases. Examining the subgraphs
consisting of proteins associated with the same disease, we found that the largest connected
component (LCC) typically contains only 10%-30% of the disease proteins (Fig. 1B). This sur-
prisingly low fraction has been shown to be a direct consequence of the incompleteness of cur-
rently available interactome maps [12]. Yet, despite this apparent scattering, the observed
agglomeration is typically still higher than expected for randomly distributed proteins
(Fig. 1C). The LCCs of 49 (out of 70) diseases are significantly larger (z-score> 1.6) than ran-
dom expectation (Fig. 1D, Table 1). To explore the possible influence of noise in the underlying
Interactome on the observed clustering we repeated the analysis on perturbed networks with
varying degrees of noise and incompleteness (see Methods). Fig. 1E shows that*50% of all
diseases exhibit significant LCCs even after removing or randomizing up to 90% of the links in
the network, indicating that the finding that disease proteins tend to reside in specific network
neighborhood is remarkably robust.

From a network science perspective, the task of identifying these disease neighborhoods can
be considered a community detection problem. Numerous algorithms [14–23] define a
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Fig 1. Topological properties of disease proteins within the Interactome. (A) Proteins associated with the same phenotype tend to localize in specific
neighborhoods of the Interactome, indicating the approximate location of the corresponding disease modules. Topological network communities are highly
interconnected groups of nodes. (B) Distribution of the fraction of disease proteins within the largest connected component (LCC) for 70 diseases. Only 10%-
30% of the disease proteins are part of the LCC. (C) LCC size of proteins associated with lysosomal storage disease compared to random expectation. Out of
45 disease proteins, 24 (53%) are part of the LCC (z-score = 23.42, empirical p-value< 10–6). (D) Significance of the LCC sizes as measured by the z-score
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community as a locally dense subgraph in a network (Fig. 1A). In order to evaluate the extent
to which such topological community detection algorithms can be used to predict disease mod-
ules, we chose three representative, methodologically distinct algorithms that have been suc-
cessfully applied to identify communities of functionally related proteins (functionalmodules)
in protein interaction networks: (i) A link community algorithm [14], which is based on link-
similarities and can also capture hierarchical communities, (ii) the Louvain method, which max-
imizes a global modularity function [21], and (iii) the Markov Cluster Algorithm (MCL), which
detects dense regions based on random flow [24]. Each of these methods identifies a large num-
ber of communities within the Interactome (Figs. 1F & S1A-C). In order to evaluate whether
some of these communities may be candidates for specific disease modules, we determined their
enrichment with known disease proteins. We found that only between*1%-5% of the commu-
nities detected by the different methods are significantly enriched (p-value< 0.05, Fisher’s exact
test) with any set of disease proteins (Fig. 1F). Conversely, only 15% of the diseases have any sig-
nificantly enriched community. As these significantly enriched communities cover only*15%-
38% of all proteins associated with the respective disease, we were unable to assign for any of
these diseases a single connected disease module (S1 Fig. D-F).

These results suggest that while topological communities may often represent meaningful
functional modules [25], they are not able to capture disease modules. One possible reason for
this may be that disease proteins do not constitute particularly dense subgraphs. To further
quantify this, we consider the modularity parameter R [23], a key measure used in community
detection, where R = 1 corresponds to perfect modularity and R*0 to randomly assigned com-
munities (see Materials & Methods and Fig. 1K). If we consider the known disease associated
proteins as communities, we find that R<0.01 for 97% of the diseases, with no disease exceed-
ing R>0.07 (Fig. 1G). While these values are still significantly different from random expecta-
tion R*0, the communities resulting from optimizing R are unlikely to represent meaningful
disease modules.

Yet, disease proteins do exhibit distinct and predictive connectivity patterns that can be cap-
tured and exploited if we evaluate the significance of their connections instead of their density.
Consider a network of N proteins containing a relatively small number (s0) of seed proteins as-
sociated with a particular disease. For randomly scattered seed proteins, the probability that a
protein with a total of k links has exactly ks links to seed proteins is given by the hypergeometric
distribution:

p k; ks; ks0

! "
¼

s0
ks

 !
N " s0
k" ks

 !

N

k

 ! ð1Þ

To evaluate whether a certain protein has more connections to seed proteins than expected
under this null hypothesis, we calculate the connectivity p-value, i.e. the cumulative probability

for all 70 considered diseases. The whiskers indicate the minimum, 25th, 50th, 75th percentile and maximum across all diseases. Overall, 70% of the diseases
show significant clustering (z-score>1.6). (E) LCC z-score distribution in noisy networks in which a fraction f of all links is randomized by either link removal or
rewiring. (F) We applied three representative community detection algorithms to explore the extent to which topologicalmodules correspond to disease
modules. Only 1%-5% of the communities detected by the different methods are significantly enriched with disease proteins, none of which includes a
significant fraction of all disease proteins. (G) Comparison of the distribution of the local modularity R for disease proteins and proteins randomly selected
from the Interactome. (H) Distribution of the connectivity significance of disease proteins and randomly selected proteins. (I) Connectivity significance of
disease proteins as a function of the fraction f of links removed from the network. The red bars denote the mean and the standard deviation as measured
across 70 diseases, yellow bars show random expectation obtained from the same number of randomly distributed genes. (J) Local modularity of disease
proteins and randomly selected proteins when a fraction f of the links is removed from the network. (K) Illustration of the local modularity R.

doi:10.1371/journal.pcbi.1004120.g001
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Table 1. List of the 70 considered diseases.

Disease #genes
(LCC)

z-
score

p-
value

Disease #genes
(LCC)

z-
score

p-
value

adrenal gland diseases 18 (5) 8.13 3.09e-4 glomerulonephritis 18 (3) 3.83 0.02

alzheimer disease 29 (6) 6.55 8.13e-4 gout 13 (1) -0.33 1.0

Amino acid metabolism inborn
errors

52 (13) 10.27 2.5e-5 graves disease 13 (2) 2.57 0.11

amyotrophic lateral sclerosis 21 (2) 1.33 0.25 head and neck neoplasms 35 (4) 2.94 0.03

anemia aplastic 21 (9) 14.49 2.12e-4 hypothalamic diseases 23 (2) 1.15 0.29

anemia hemolytic 29 (7) 8 2.12e-4 leukemia b-cell 17 (2) 1.82 0.18

aneurysm 15 (4) 7.22 1.15e-3 leukemia myeloid 43 (17) 16.67 0.0

arrhythmias cardiac 30 (5) 4.91 3.87e-3 lipid metabolism disorders 50 (4) 11.62 2e-6

arthritis rheumatoid 42 (9) 7.95 2.53e-4 liver cirrhosis 24 (2) 1.07 0.32

asthma 37 (3) 1.53 0.12 liver cirrhosis biliary 23 (2) 1.15 0.29

arterial occlusive diseases 44 (4) 2.19 0.06 Lung diseases obstructive 40 (4) 2.49 0.04

arteriosclerosis 38 (4) 2.66 0.03 lupus erythematosus 75 (7) 1.26 0.13

basal ganglia diseases 45 (8) 6.39 1.13e-3 lymphoma 24 (2) 1.07 0.32

behcet syndrome 13 (2) 2.57 0.11 lysosomal sorage diseases 45 (24) 23.42 0.0

bile duct diseases 31 (2) 0.6 0.46 mascular degeneration 44 (8) 6.53 9.36e-4

blood coagulation disorders 40 (25) 26.91 0.0 metabolic syndrome x 14 (3) 5.06 8.52e-3

blood platelet disorders 26 (7) 8.82 1.03e-4 motor neuron disease 31 (2) 0.6 0.46

breast neoplasms 40 (18) 18.74 0.0 multiple sclerosis 69 (11) 5.87 1.89e-3

carbohydrate metabolism inborn
errors

77 (11) 4.94 4.31e-3 muscular sydtrophies 36 (12) 12.86 2e-6

carcinoma renal cell 18 (3) 3.84 0.02 mycobacterium infections 22 (4) 4.86 4.91e-3

cardiomyopathies 50 (12) 9.65 6.6e-5 myeloproliferative disorders 19 (6) 9.76 6.1e-5

cardiomyopathy hypertrophic 22 (4) 1.86 4.96e-3 metabolic and nutritional diseases 599 (270) 4.04 2e-6

celiac disease 36 (2) 0.34 0.56 peroxisomal disorders 20 (17) 30.86 0.0

cerebellar ataxia 30 (2) 0.66 0.44 psoriasis 54 (5) 2.47 0.04

cerebrovascular disorders 47 (4) 1.98 0.07 purine-pyrimidine metabolism inborn
errors

16 (2) 1.98 0.16

charcot-marie-tooth disease 27 (5) 5.46 2.32e-3 renal tubular transport inborn errors 34 (3) 1.74 0.10

colitis ulcerative 56 (4) 1.44 0.12 sarcoma 25 (7) 9.13 8.4e-5

colorectal neoplasms 42 (16) 15.83 0.0 spastic paraplegia hereditary 20 (1) -0.51 1.0

coronary artery disease 31 (2) 0.6 0.46 spinocerebellar ataxias 28 (2) 0.78 0.40

crohn disease 72 (10) 4.82 4.91e-3 spinocerebellar degenerations 30 (2) 0.65 0.44

death sudden 19 (1) -0.49 1.0 spondylarthropathies 18 (4) 5.99 2.26e-3

diabetes mellitus type 2 73 (9) 4.03 9.83e-3 taupathies 35 (9) 9.32 5.6e-5

dwarfism 26 (3) 2.5 0.05 uveal diseases 17 (3) 4.07 0.01

esophageal diseases 24 (3) 2.76 0.04 varicose veins 20 (1) -0.51 1.0

exophthalmos 13 (2) 1.58 0.11 vasculitis 15 (2) 2.16 0.14

List of the 70 diseases considered in this study, together with their respective number of associated genes and the size of their largest connected
component (LCC) on the Interactome, as well as its significance compared to randomly selected genes as given by the z-score and the empirical p-value
obtained from 106 simulations.

doi:10.1371/journal.pcbi.1004120.t001
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for the observed or any higher number of connections:

p" valueðk; ksÞ ¼
Xk

ki¼ks

pðk; kiÞ ð2Þ

The use of the significance of the number of connections instead of their absolute number re-
duces the spurious detection of high-degree proteins. Fig. 1H shows that the connectivity p-val-
ues within the sets of known disease proteins are very significantly (p-value< 10–241,
Kolmogorov-Smirnov test) shifted towards smaller values when compared to the distributions
expected for randomly scattered proteins. For example, the randomization procedure never
yields connectivity significance values smaller than 10–5, while 60% of the disease proteins have
a connectivity significance smaller than this value, some as small as 10–23.

Taken together, these results show that disease proteins exhibit distinct interaction patterns
among each other that suggest the existence of specific disease modules within the Interactome.
Yet, these modules apparently do not coincide with topological communities of densely inter-
connected proteins. In principle, this discrepancy could be either a mere consequence of in-
complete Interactome and gene-disease association data [5,10,26], or reflect an inherent
fundamental difference between disease and topological modules. To investigate this question,
we compared the behavior of the two relevant measures, local modularity and connectivity sig-
nificance, for different levels of completeness of the underlying network. Fig. 1I shows that the
connectivity significance of disease genes slowly drops as more and more links are removed.
Conversely, this trend indicates that the predictive power of the connectivity significance
should continuously increase as the Interactome becomes more and more complete. For the
local modularity measure, however, we see a very different behavior. Fig. 1J shows that the
modularity remains roughly constant as the network completeness decreases or even slightly
increases, similar to the behavior observed for random expectation. The reason for this some-
what unintuitive behavior is that random removal affects links between disease proteins to the
same extent as links to other proteins, thereby leaving their relative relationship, on average,
unchanged (Fig. 1K). We therefore expect that with increasing network completeness, the local
modularity among disease proteins will not significantly increase. These results suggest that to-
pological communities are not able to significantly capture disease proteins, regardless of the
level of network completeness. Connectivity significance, on the other hand, captures the inter-
action patterns between disease proteins more and more distinctively as the network ap-
proaches the complete network.

The DIAMOnD algorithm
Building on the observation that the connectivity significance is highly distinctive for known
disease proteins, we propose the following algorithm to infer yet unknown disease proteins
(Fig. 2A), and hence to identify the respective disease module:

i. The connectivity significance (2) is determined for all proteins connected to any of the s0
seed proteins.

ii. The proteins are ranked according to their respective p-values.

iii. The protein with the highest rank (i.e. lowest p-value) is added to the set of seed nodes, in-
creasing their number from s0 !s1 = s0+1.

iv. Steps (i)-(iii) are repeated with the expanded set of seed proteins, pulling in one protein at a
time into the growing disease module.

DIAMOnD and Disease Modules within the Human Interactome
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The procedure (i)-(iv) can be continued until the module spans across the entire network.
The order in which the proteins are being pulled into the module reflects their topological rele-
vance to the disease, resulting in a ranking of all proteins. Fig. 2B shows a subgraph of the
Interactome highlighting the seed proteins associated with macular degeneration and the first
50 DIAMOnD genes.

Fig 2. The DIAMOnD algorithm. (A) At each step of the iterative algorithm, the connectivity significance of all immediate neighbors of disease proteins is
calculated. Next, the most significantly connected node (lowest p-value) is integrated into the module, thus expanding the module by one node per iteration
step. (B) Subgraph of the Interactome highlighting the seed proteins formacular degeneration and the first 50 corresponding DIAMOnD proteins. In the
beginning, two separate clusters grow independently until they merge at iteration step 50. Note that DIAMOnD also proposes proteins that do not have direct
connections to seed proteins, e.g. at iteration steps 12 and 15. The squares mark seed proteins whose removal leads to large differences in the resulting
DIAMOnDmodules. The three leftmost squares, for example, enable the identification of a protein at iteration step 23, which in turn triggers the inclusion of
the cluster of proteins depicted underneath, which would be absent otherwise.

doi:10.1371/journal.pcbi.1004120.g002
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Calculating tens to hundreds of p-values at each iteration is computationally expensive;
therefore we have implemented an efficient calculation to reduce the execution time (see
Materials & Methods). Furthermore, as detailed below, the algorithm can be easily adapted
to incorporate additional features, in particular weighted links and/or protein associations.

Synthetic modules
In order to systematically evaluate the performance of DIAMOnD we first used a well-con-
trolled test scenario by constructing synthetic modules of proteins within the Interactome. We
analyzed the extent to which DIAMOnD can recover the full module if we remove the disease
association from a certain fraction of proteins, thus obtaining a seed cluster that is no longer
fully connected. There are many different possibilities to construct a connected set of nodes in
a network, generally leading to modules with different topological properties. We implemented
two different methods:

i. Shell-modules: We randomly selected one node from the network and add all its first and
second neighbors to the module (S2 Fig. A). Depending on the particular starting node, the
constructed module may vary in size (S2 Fig. B). Most diseases in our curated corpus have
between 50 and 150 currently identified disease proteins. Assuming that these represent only
30%-50% of all associated proteins, we chose 200 as the putative size of complete disease
modules within the Interactome.

ii. Connectivity significance modules: We started from a randomly selected node and iteratively
add the most significantly connected node to the module until its size reaches 200 nodes.
This process produces modules with topological properties similar to those observed for
real diseases.

Estimating the recovery rate
For each initially connected synthetic module, we randomly removed a certain fraction (25%,
50% and 75%) of the nodes and use the remaining nodes as seed proteins for DIAMOnD.
Fig. 3A and 3B show the fraction of recaptured initial seed nodes (recall) as a function of the
number of iterations of the algorithm for 50% of the module removed. As expected, the highest
rate of true positives is achieved in early iterations, so the highest ranked proteins are most like-
ly to be part of the original full module.

In both shell and connectivitymodules, we find that the total recall of the removed nodes is
relatively insensitive to the incompleteness of the seed set, i.e. the fraction of removed seed
nodes (Fig. 3C,D). The observation that a similar number of proteins can be recalled from a
25% subset of the full module and from a 75% subset can be used to address a critical limitation
of prioritization methods that only provide a ranking of all proteins, yet offer no objective crite-
rion for the total number of biologically relevant proteins. Indeed, estimating the true positive
rate is inherently difficult as the true set of proteins is by definition unknown. However, since
the recall of DIAMOnD does not depend on the unknown total number of disease proteins, we
can estimate it by further pruning a given incomplete set of known disease proteins. We tested
this procedure on our set of 70 diseases by removing 10%, 20% and 30% of the respective
known disease proteins, see Fig. 3E,F for two examples, blood coagulation and lipid metabolism
disorders, respectively. Generally, the recall is found to be higher when disease associations are
preferably removed from proteins that are part of the original LCC.

DIAMOnD and Disease Modules within the Human Interactome
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Analyzing the sensitivity towards perturbations
Both the network data and the disease associations are inherently noisy and expected to con-
tain a considerable number of false positives. The similar recall from different levels of seed
protein incompleteness suggests, however, that collectively the seed proteins and their interac-
tions provide sufficient predictive power to yield robust predictions. In order to evaluate how
sensitive the DIAMOnD outcome is with respect to variations in the set of seed genes, we per-
formed an N-1 analysis: We modified the initial seed protein set by removing one of the s0 pro-
teins at a time, resulting in s0 different DIAMOnD sets. Comparing the resulting sets of
DIAMOnD proteins to the original predictions obtained from the full seed set, we find that the
methodology is very robust, yielding overlaps close to 100% in most cases. Individually, most
seed proteins can be removed without considerably changing the resulting DIAMOnD

Fig 3. Performance evaluation of DIAMOnD.We use two different methods to construct synthetic modules (shells and connectivitymodules). (A, B)
Recovery rate of the DIAMOnD algorithm when removing 50% of seed nodes from shells (A) and connectivity synthetic modules (B), respectively. The
recovery rate in synthetic modules is roughly independent of the module incompleteness. (C, D) Recovery rate when 25%, 50% and 75% of the nodes are
removed from shells and connectivitymodules. (E, F) Recovery rate when 10%, 20% and 30% of the nodes are removed from the disease proteins of
lysosomal storage diseases and lipid metabolism disorders. (G) Robustness of the DIAMOnD algorithm towards small variations in the starting seed proteins
(N-1 analysis). While most nodes influence the outcome very little, there are a few nodes whose removal results in a large deviation from the original
outcome. This deviation may either persist across iterations (red data points) or disappear after a few iterations (green). (H) Crucial nodes are characterized
by a 3–4 times higher degree. (I) DIAMOnD robustness towards random link removal from the Interactome. We identified the DIAMOnD proteins for 70
diseases in the original Interactome as well as in perturbed networks with varying fractions f of randomly removed links. Data points and bars represent the
median and median absolute deviation of the overlap (number of common proteins) between original and randomized DIAMOnD sets across 70 diseases as
a function of the iteration step. (J) Same as (I), but for perturbed networks in which varying fractions f of all links have been randomly rewired.

doi:10.1371/journal.pcbi.1004120.g003
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proteins. There are, however, typically a small number of nodes whose removal results in a
drastic change of the final outcome (Figs. 2B and 3G). The deviation caused by a specific node
removal may occur in the initial iterations and disappear over the long run (Fig. 3G, green data
points) or persist across all iterations (red data points). These latter nodes are therefore more
important for the integrity of the seed set. Fig. 3H shows the degree of the nodes that cause de-
viations of different persistence (see Materials & Methods). Crucial nodes with high persistence
are characterized by a high degree (generally several fold increase compared to both average de-
gree of the network,<k> = 20.7, and average degree of the disease proteins,<kdisease> = 28.9).
Interestingly, we further observe that crucial nodes whose removal will be most destructive are
generally not part of the largest connected component of the initial seed set. Instead, the disease
modules are robust towards removing disease proteins from the LCC, as these proteins will be
recovered early on due to their significant connectivity.

Similar results are obtained when noise is introduced in the underlying network (see
Materials & Methods for details). Fig. 3I and 3J show that, regardless of the method we
choose to add the noisiness to the network, small variations*1% of all links in the Interac-
tome have almost no effect on the obtained DIAMOnD genes. Up to 5% of the Interactome
can be completely randomized, while still retrieving more than 70% of the original set of
DIAMOnD genes for more than half of all diseases.

Validating disease modules
Next we explore the performance of DIAMOnD on 70 real diseases. Since the full set of disease
proteins is, by definition, unknown, we cannot assess the performance directly in terms of true
positives/negatives. We therefore use publicly available gene annotation data, GeneOntology
[27] and biological pathways fromMSigDB [28] to validate the DIAMOnD disease modules: For
each disease we determine a reference set of all significantly enriched GO-terms and pathways
within the set of seed proteins. We then compare the respective annotations of each DIAMOnD
gene to this reference set, assuming that proteins with annotations similar to the ones of the seed
genes are more likely to be disease associated as well [1,29–32] (see Materials & Methods for
details). Fig. 4A,B offers examples for the validation according to pathway similarity for lysosom-
al storage diseases. The first*200 DIAMOnD genes are found to participate in important seed
pathways at a rate similar to the one within the seed proteins themselves and significantly higher
than random expectation. In total, 58 out of 70 disease modules can be validated by either GO
terms or pathways, 46 by both. Fig. 4D,E summarizes the validation of the disease modules for
all 70 diseases. The majority of the detected modules perform several times better than random
expectation, in particular in the first 50–100 iterations.

Depending on the specific application, the main interest of applying DIAMOnD could lie ei-
ther in selecting a small number of most promising disease protein candidates, or in obtaining
a larger set of proteins to explore the molecular disease mechanisms in a broader context. For
the former case, DIAMOnD directly offers a ranked list of candidates. The latter approach,
however, requires an additional criterion to define the boundary of the disease module, i.e. a
threshold for the total number of proteins to be considered. This threshold can be chosen by
using either (i) topological or (ii) biological properties of the agglomerated proteins.

(i) The connectivity p-values cannot be used directly to define a topological threshold. The
reason is that the module grows at each iteration step, i.e. the number of seed genes s on which
the p-value in Eqs. (1) and (2) is based, also increases. Since larger sets can produce smaller p-
values, the absolute significance values obtained at different iteration steps cannot be compared
to each other. However, our analysis suggests and alternative approach to define a topological
threshold: As discussed above, the recall of the DIAMOnD algorithm does not depend
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sensitively on the initial level of completeness (Fig. 3C-F). Hence, the true positive rate can be
estimated by removing varying fractions of seed proteins. For lysosomal storage disorders, for
example we find an estimated recall of*50% at iteration 40 (Fig. 3E). After 40 iterations, the
recall saturates and reaches a plateau, indicating that thereafter only few DIAMOnD proteins
are expected to be truly disease associated. This saturation point may therefore be used as a
threshold for the total number of DIAMOnD genes to consider.

(ii) A biological criterion for the threshold can be obtained from the validation according to
Fig. 4A,B. The number of DIAMOnD proteins with direct biological evidence reaches a plateau
at*200 iteration steps, suggesting this as the maximal number that should be considered. A
more stringent criterion is to use the significance of the enrichment (see Materials & Methods).
The enrichment is typically strongest within the highest ranked DIAMOnD proteins and de-
creases with increasing iteration steps. For lysosomal storage diseases, for example, we find that
the first 200 DIAMOnD proteins are similarly significantly enriched as the seed proteins
(Fig. 4B). The largest connected component of the seed proteins aloneconsists of 24 (out of 45)
proteins. When 200 DIAMOnD proteins are added, the largest connected component of the re-
sulting module integrates 11 additional, previously disconnected seed proteins, resulting in a
module consisting of 234 proteins (Fig. 4C). Fig. 4F shows the distribution of the fraction of in-
tegrated seed proteins across 70 diseases for several iterations. We find that with increasing
number of DIAMOnD genes more and more disconnected seed proteins are integrated into
the module, thus allowing for an integrated analysis of their molecular mechanism.

Fig 4. Biological evaluation of DIAMOnD. (A) Validation of the DIAMOnD genes based on GeneOntology terms (see Materials & Methods). (B) The
significance of the similarity between DIAMOnD genes and seed genes suggests a cutoff of*200 DIAMOnD genes. (C) Network representation of the
lysosomal storage diseasesmodule. (D,E) Summary of the validation for all 70 disease modules based on GeneOntology (D) and biological pathways (E). (F)
Fraction of seed proteins that are contained in the LCC of the DIAMOnDmodule for varying iteration steps. The distributions show the values obtained from
70 diseases. By introducing DIAMOnD proteins, previously disconnected seed proteins become part of the LCC.

doi:10.1371/journal.pcbi.1004120.g004
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Comparison with existing methods
In recent years, a number of disease protein prioritization methods [24,29,33–36] have been
developed that can in principle be used to identify disease modules. To evaluate the relative
performance of DIAMOnD, we implemented a random walk based algorithm (RW) [35] that
was shown to outperform other methods and may therefore serve as a reference [29].

Fig. 5A,B summarizes the results of the comparison between DIAMOnD and RW on the
synthetic modules. As we removed the attribute from half of the module nodes (about 100
nodes), iteration step 100 is a reasonable point of comparison. For both types of synthetic mod-
ules we find that DIAMOnD has a higher recovery in the top 100 predictions, whereas RW
captures more true hits in its late predictions. In most cases DIAMOnD is able to identify re-
moved nodes in the early iterations until the recovery rate saturates (Fig. 5A). A higher initial
slope corresponds to higher precision, i.e. a higher ratio of true positives TP/(TP+FP). DIA-
MOnD shows higher precision and sensitivity (recall) in the initial iterations whereas RW per-
forms better at later iterations once DIAMOnD saturated. In the context of disease protein
identification, a high quality detection of fewer proteins with few false positives is generally
more desirable than low quality detection of hundreds of proteins.

We also compared the predictions of DIAMOnD and RW for each of the 70 real disease
modules, as illustrated in Fig. 5C for lysosomal storage diseases. In general, DIAMOnD offers
several conceptual and practical advantages compared to previous methods: (a) Many methods

Fig 5. Comparison between DIAMOnD and RandomWalk (RW). (A,B) Average recovery rates of DIAMOnD and the reference RW algorithm when
removing 50% (100 nodes) of 100 generated shells (A) and connectivity (B) modules. (C) Comparison of the biological evidence for proteins identified by
DIAMOnD and RW for lysosomal storage diseases. (D) Overlap between identified proteins and immediate neighbors of seed proteins. In contrast to RW,
DIAMOnD includes a considerable number of proteins without first-order interactions to seed genes. (E) Comparison of the performance of DIAMOnD and
RW across 70 diseases with respect to non-specific disease data. (F) Degree distributions of the identified proteins. DIAMonD proteins are characterized by
the absence of hubs.

doi:10.1371/journal.pcbi.1004120.g005
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like RW preferentially select proteins from the immediate neighborhood of the seed proteins.
Surprisingly, we find that a considerable fraction of the DIAMOnD proteins do not directly in-
teract with seed genes (Figs. 2B and 5D). DIAMOnD thereby offers disease-relevant candidates
beyond first-order protein interactions. (b) Physically interacting proteins often share func-
tional annotations and pathways [10,25]. As a consequence, methods like RW are expected to
perform well on generic validation data. In our comprehensive analysis across 70 diseases we
are limited to such generic validation data and hence observe a comparable performance when
GO term similarity is used as reference. Yet, we find that when we use pathways DIAMOnD
outperforms RW (Fig. 5E). Furthermore, a more focused study on a single disease that used a
variety of disease-specific data, e.g. from GWAS, microarray experiments and comorbidity
analysis, has experimentally confirmed the specific disease-relevance of the DIAMOnD genes
and significant outperformance of DIAMOnD over RW [37]. (c) By design, DIAMOnD avoids
the selection of spurious high degree nodes. Consequently, the resulting modules are generally
characterized by the absence of hubs. RW proteins, in contrast, have 2–3 times higher average
degree (Fig. 5F). (d) The recall rate of the DIAMOnD algorithm is roughly independent of the
level of incompleteness in the seed genes. It therefore allows us to estimate the number of bio-
logically relevant predictions (Fig. 3C-F). In contrast, methodologies like RW solely provide a
ranking, without predicting the total number of the most probable candidates. (e) DIAMOnD
shows a significantly higher recall in the early iterations compared to RW, thereby providing
higher confidence candidates early on. (e) As we discuss below, the DIAMOnD algorithm can
be fine-tuned for specific applications, for example by giving varying weights to the initial
seed genes.

Extending the basic DIAMOnD algorithm
The DIAMOnD methodology can be easily extended to incorporate weighted links or nodes.
In the iteration process introduced above, the seed proteins are treated the same way as the pre-
dicted proteins agglomerated into the module at later iteration steps. We can, however, give
higher weights to the seed proteins compared to those that are only predicted. This can be
achieved by introducing an additional weight α> 1 for the seed proteins and α = 1 for all other
proteins. By considering links to nodes with higher weights to be α times stronger, the direct
neighbors of seed proteins have a higher chance of being identified. Technically, this is imple-
mented by artificially increasing the number of seed genes, for example by duplicating their
number in the case of α = 2, while maintaining their original interactions (Fig. 6A). The gener-
alized form of Equation (1) then becomes:

pðk; ks; ks0Þ ¼

sþ ða" 1Þs0
ks þ ða" 1Þks0

 !
N " s

k" ks

 !

N þ ða" 1Þks
kþ ða" 1Þks0

 ! ð3Þ

By tuning α and comparing the different resulting DIAMOnD sets we can optimize their bio-
logical relevance. In synthetic modules, the recovery rate could thereby be increased 2 to 3
times in comparison to the original version of the algorithm for which the recovered fraction
saturates (Fig. 6B,C). On the set of 70 diseases, the optimal values for α vary considerably (see
Fig. 6D and 6E for the examples of lysosomal storage diseases and ulcerative colitis). Based on
the pathway validations, we find that α& 10 performs best for many diseases (Fig. 6F). As
noted above, however, the validation according to pathways is biased towards immediate
neighbors of the seed genes and we therefore expect that optimal values of α will depend on the
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specific application and the validation data that are used. We also observed that introducing α
allows for the construction of larger modules by helping avoid plateaus in the identification of
relevant proteins (Fig. 6B-E).

Discussion
The hypothesis that disease associated proteins tend to interact with each other in the human
Interactome underlies all network-based prioritization methods. Yet, for most diseases we
found that only a relatively small fraction of known seed proteins in fact interact with each
other. As a consequence, diseases cannot be associated with topologically dense network com-
munities. Instead of the interaction density, we identified the interaction significance as the key
quantity to characterize the connection patterns among disease proteins. While in principle
this could be a consequence of our currently still very limited knowledge of disease associated
proteins and their interactions, our results suggest that there is in fact a fundamental difference
between disease modules and topological modules. Biologically, it is indeed plausible that dis-
ease modules do not necessarily coincide with densely interconnected topological modules.
Highly interconnected proteins often represent functional units to perform a certain cellular
task. Diseases, on the other hand, are likely to be the result of perturbations among several
functional modules and therefore expected to span across functional modules/
topological communities.

Fig 6. Extending the DIAMOnD algorithm. (A) Illustration of how the algorithm can be modified to give the initial seed proteins a higher weight α = 2 by
(virtually) doubling the seed proteins while keeping their interactions. Tuning α results in different sets of detected proteins. (B,C) Comparing the performance
for varying values of α in synthetic shells (B) and connectivity significance (C) modules, respectively. The best results are obtained for α = 3. (C) The
performance may also saturate for α larger than a certain value. For a given disease α can be tuned to optimize the results. Performance of DIAMOnD with
respect to different values of α is shown for ulcerative colitis (D) and nutritional and metabolic diseases (E). These plots suggest that at α = 2 the number of
true positives is maximal. (F) Overall, α*10 results in the best performance of DIAMOnD across 70 diseases. The individual values may vary considerably,
however, suggesting an individual optimization for best results.

doi:10.1371/journal.pcbi.1004120.g006
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Our analysis of the connection patterns of known disease proteins further allowed us to design
a predictive and robust algorithm to uncover unknown disease associations and construct a com-
prehensive disease module. For both synthetic test modules and real disease modules the recall of
DIAMonD generally does not depend on the level of completeness in the initial set of seed pro-
teins, but is rather a property of the module itself. This can be used to estimate the expected true
positive rate in the predictions and is particularly convenient for predicting new disease associa-
tions, where the total number of proteins involved in a disease is not known. While the outcome
of DIAMOnD does not depend sensitively on the exact set of seed proteins, there typically are a
few crucial seed proteins whose omission leads to drastically different and presumably random
results. These crucial proteins are characterized by their high degree. Their topological impor-
tance suggests also particularly important roles for the pathobiological mechanisms of the disease.
Overall, the final disease modules typically consist of one large component that contains all DIA-
MOnD genes and 30%-60% of the initially disconnected seed proteins, the rest remaining discon-
nected. The integration of the several initially disconnected seed clusters into a broader disease
module and the elucidation of the network paths that interconnect them is crucial for a holistic
understanding of the pathobiology and molecular mechanisms underlying complex diseases.
Whether the remaining disconnected seed proteins could be integrated if the Interactome data
was more complete, or whether their disease associations are spurious remains an open question.

Materials and Methods
Interactome construction
We only consider direct physical protein interactions with reported experimental evidence. For
this, we consolidated several data sources as described in [12]:

i. Regulatory interactions: We used the TRANSFAC [38] database that lists regulatory interac-
tions derived from the presence of a transcription factor binding site in the promoter region
of a certain gene. The resulting network consists of 774 transcription factors and genes con-
nected via 1,335 interactions.

ii. Binary interactions: We combine several yeast-two-hybrid high-throughput datasets
[10,39–42] with binary interactions from IntAct [43] and MINT [44] databases. The sum of
these data sources yields 28,653 interactions between 8,120 proteins.

iii. Literature curated interactions: These interactions, typically obtained by low throughput
experiments, are manually curated from the literature. We use IntAct, MINT, BioGRID
[45] and HPRD [46], resulting in 88,349 interactions between 11,798 proteins.

iv. Metabolic enzyme-coupled interactions: Two enzymes are assumed to be coupled if they
share adjacent reactions in the KEGG and BIGG databases. In total, we use 5,325 such met-
abolic links between 921 enzymes from [47].

v. Protein complexes: Protein complexes are single molecular units that integrate multiple
gene products. The CORUM database [48] is a collection of mammalian complexes derived
from a variety of experimental tools, from co-immunoprecipitation to co-sedimentation
and ion exchange chromatography. In total, CORUM yields 2,837 complexes with 2,069
proteins connected by 31,276 links.

vi. Kinase network (kinase-substrate pairs): Protein kinases are important regulators in differ-
ent biological processes, such as signal transduction. PhosphositePlus [49] provides a net-
work of peptides that can be bound by kinases, yielding in total 6,066 interactions between
1,843 kinases and substrates.
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vii. Signaling interactions: The dataset from [50] provides 32,706 interactions between 6,339
proteins that integrate several sources, both high-throughput and literature curation, into
a directed network in which cellular signals are transmitted by proteins-protein interac-
tions. Note that we do not take the direction of these interactions into account.

The union of all interactions from (i)-(vii) yields a network of 13,460 proteins that are inter-
connected by 141,296 physical interactions.

Disease-gene associations
The corpus of 70 diseases was manually chosen by a medical expert, with the additional criteria
of at least 20 associated genes reported in the literature. The gene-disease associations were re-
trieved from OMIM (Online Mendelian Inheritance in Man; http://www.ncbi.nlm.nih.gov/
omim) [51] and GWAS (Genome-Wide Association Studies. The OMIM associations we use
also include associations from UniProtKB/Swiss-Prot and have been compiled by [13]. The
disease-gene associations from GWAS are obtained from the PheGenI database (Phenotype-
Genotype Integrator; http://www.ncbi.nlm.nih.gov/gap/PheGenI) [9] that integrates various
NCBI genomic databases. We use a genome-wide significance cutoff of p-value' 5 ( 10–8.

Local modularity R
To quantify the extent to which disease proteins correspond to topological communities, we
use the local modularity R [23]. The community character of a set of nodes C is determined by
the “sharpness” of its boundary, i.e by how well it is separated from the rest of the network.
The boundary B consists of all nodes in C that have connections to nodes outside the commu-
nity (Fig. 1K). The local modularity R is then defined as the number of links attached to nodes
in B that do not leave the community, normalized by their total number of links. This can be
written as

R ¼

X

ij

Bijdði; jÞ
X

ij

Bij

where Bij is the adjacency matrix of the boundary nodes and δ(i,j) = 1 if both nodes i and j are
in C, otherwise δ(i,j) = 0.

The comparison with random control was done by selecting for each disease the same num-
ber of proteins at random from the Interactome (100 times). We then used a Kolmogorov-
Smirnoff test to estimate the significance of the difference between the distribution of disease
proteins and the respective distribution obtained in the randomization.

Topological community detection methods
We use three well-established, methodologically distinct algorithms:

i. A link community algorithm from [14], which provides a hierarchical clustering of all links
in the network. We use the default cut-off at the optimal partition density.

ii. The parameter-free Louvain method [21], which maximizes the global modularity of
the network.

iii. The Markov Cluster Algorithm (MCL) [24], which is based on random flow. We use the
default settings (inflation parameter r = 2) of version mcl-12–068.
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Random walk based disease gene prioritization
We implemented a method from [35] that prioritizes candidate genes based on network diffu-
sion. The seed genes serve as starting points for a random walker that wanders from node to
node along the links of the network. At every time step of the iterative algorithm, the walker
moves to a randomly selected neighbor of its current position. After every move the walker is
reset to a randomly chosen seed gene with a given probability r (we use r = 0.4). After a suffi-
cient number of iterations the frequency with which the nodes in the network are visited con-
verges and can be used to rank the corresponding genes. Genes that are visited more often are
considered to be closer to the seed genes and therefore more relevant to the disease than those
who are visited less often.

Network randomization
We use two models to construct ensembles of randomized networks with varying degrees of
noise and incompleteness compared to the original Interactome:

i. To investigate the effects of network incompleteness we construct pruned networks by re-
moving a fraction of randomly selected links from the Interactome.

ii. To explore the impact of noise in the Interactome we use partially rewired networks in
which a fraction of randomly selected links are split and then randomly reconnected. This
procedure corresponds to the configuration model [52,53] and does not alter the degrees of
the nodes, i.e. only the specific interaction partners of the nodes are randomized, not their
overall number. Note that the original network is perturbed considerably even at small frac-
tions of rewired links as both existing links are removed and simultaneously new ones
are established.

DIAMOnD implementation
The number of times we need to calculate the computationally relatively expensive p-values
can be considerably reduced by noticing that two proteins with the same values of either ks or k
can be ranked directly according to their value in the respective other parameter, see Eqs. (1)
and (2): If two proteins have the same degree k, the one with higher ks will result in less terms
in the sum in Eq. (2) and consequently a lower p-value. Similarly, between two proteins with
the same number of connections to seeds ks, the one with lower k will result in lower p-value.
This results in the following procedure: At each iteration step, we first classify the nodes based
on their ks and rank the node with lowest k highest within that class. Next, we classify the top
ranks of each class by their degree k and choose the ones with highest ks. Finally, we calculate
the exact p-value for the remaining nodes. This procedure guarantees that the number of can-
didate nodes will reduce to at most s nodes per iteration, as ks cannot exceed s (note that si!
si+1 at each iteration). In the worst-case scenario, and without further reducing the candidate
nodes by their degree k, we are left with s nodes for which we need to calculate p-values. As-
suming we need to identify N nodes from the network, the time complexity of the algorithm is
of the order s+(s+1)+. . .+(N-1)+N* NðN"1Þ

2
= O(N2). This compares favorably with other well

established algorithms such as the random walk based method, whose complexity is between O
(NlogN) and O(N3) [54,55].

Topological validation, N-1 analysis and persistence
We quantify the extent to which the removal of a seed node affects the outcome by two param-
eters: (i) the deviation from the original outcome and (ii) the persistence of that deviation for
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many iterations:

deviation ¼1" overlap

where the overlap is measured by the number of proteins that are in common between the orig-
inal DIAMOnD outcome and the DIAMOnD outcome after the removal of seed genes. The
persistence of a deviation is measured as

Persistence ¼Total number of iteration steps where the deviation persists
Total number of iterations

High persistence indicates that the removal of a node results in a deviation that holds across
all iterations. However, typically we find that the perturbations introduced by removing a sin-
gle seed node are compensated after a few iterations.

Gene annotations
We use Gene Ontology (GO) for all genes are extracted from [http://www.geneontology.org/,
downloaded Nov. 2011]. We only use high confidence annotations associated with the evidence
codes EXP, IDA, IMP, IGI, IEP, ISS, ISA, ISM or ISO. In particular, we do not use annotations
inferred from physical interactions (evidence code IPI) in order to avoid circularity. To obtain
a complete set of GO terms from the reported most specific term for each gene, all annotations
are propagated upwards on the full tree.

The pathway annotations are extracted from the Molecular Signatures Database (MSigDB)
published by the Broad Institute, Version 3.1 [56]. MSigDB integrates several different pathway
databases; we use the ones from KEGG, Biocarta and Reactome.

Biological validation analysis
To validate the potential disease relevance of the predicted candidate genes (from either DIA-
MOnD or RW), we compare their biological characteristics to the ones of the initial seed genes
using the following workflow:

i. First we identify the set of GO terms (pathways) that are significantly enriched within the
given set of seed genes using Fisher’s exact test (Bonferroni corrected p-value<0.5).

ii. For each candidate gene we then check whether it is annotated with any of these significant
terms. Genes with common annotations are considered as true positives.

iii. We compare the performance of DIAMOnD genes to seed genes as well as to random ex-
pectation for the same number of genes drawn randomly from network. The performance
is based on the number of candidate genes that are considered true positives. To quantify
the statistical significance of a given number of true positives at a given iteration step we
use a sliding window approach: At each iteration step i, we consider the same number of
candidate genes as there are seed genes for the respective disease. If there are 100 seed
genes, for example, we use the genes in the interval [i-100/2, i+100/2] and count the num-
ber true positives among these genes. The statistical significance of an observed number is
then determined using Fisher’s exact test. Matching the number of candidate genes with
the number of seed genes allows us to compensate for the dependence of p-values on the
underlying set size, thereby enabling us to directly compare DIAMOnD sets at different it-
eration steps, as well as DIAMOnD genes and seed genes.
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Supporting Information
S1 Fig. Size distribution of the topological communities in the Interactome as identified by
(A) link clustering, (B) the Louvin method and (C) the MCLmethod. (D-F) Number of com-
munity-disease pairs with significant overlap vs. their Jaccard similarity J for the three meth-
ods. No identified topological community coincides (J = 1) with a full set of disease genes.
(EPS)

S2 Fig. Properties of the synthetic Shellmodules. (A) Illustration of the construction process:
An initial node is selected at random and all first and second neighbors are added to the mod-
ule. The exact topological properties of the resulting modules depend on the initial node. Panel
(B) shows how the synthetic module size varies with the degree of the initial node.
(EPS)

S1 Data. Annotated Interactome data.
(TSV)

S2 Data. Disease gene association data for 70 diseases.
(TSV)

S1 Code. A python implementation of the DIAMOnD algorithm.
(PY)
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