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Irregularities and power law distributions
in the breathing pattern in preterm and term infants

U. FREY,1 M. SILVERMAN,1 A. L. BARABÁSI,2 AND B. SUKI3

1Department of Child Health, Leicester University, Leicester LE2 7LX, United Kingdom;
2Department of Physics, University of Notre Dame, South Bend, Indiana 46556; and
3Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215

Frey, U., M. Silverman, A. L. Barabási, and B. Suki.
Irregularities and power law distributions in the breathing
pattern in preterm and term infants. J. Appl. Physiol. 86(3):
789–797, 1998.—Unlike older children, young infants are
prone to develop unstable respiratory patterns, suggesting
important differences in their control of breathing. We exam-
ined the irregular breathing pattern in infants by measuring
the time interval between breaths (‘‘interbreath interval’’;
IBI) assessed from abdominal movement during 2 h of sleep
in 25 preterm infants at a postconceptional age of 40.5 6 5.2
(SD) wk and in 14 term healthy infants at a postnatal age of
8.2 6 4 wk. In 10 infants we performed longitudinal measure-
ments on two occasions. We developed a threshold algorithm
for the detection of a breath so that an IBI included an apneic
period and potentially some periods of insufficient tidal
breathing excursions (hypopneas). The probability density
distribution (P) of IBIs follows a power law, P(IBI),IBI2a,
with the exponent a providing a statistical measurement of
the relative risk of insufficient breathing. With maturation, a
increased from 2.62 6 0.4 at 41.2 6 3.6 wk to 3.22 6 0.4 at
47.3 6 6.4 wk postconceptional age, indicating a decrease in
long hypopneas (for paired data P 5 0.002). The statistical
properties of IBI were well reproduced in a model of the
respiratory oscillator on the basis of two hypotheses: 1) tonic
neural inputs to the respiratory oscillator are noisy; and 2)
the noise explores a critical region where IBI diverges with
decreasing tonic inputs. Accordingly, maturation of infant
respiratory control can be explained by the tonic inputs
moving away from this critical region. We conclude that
breathing irregularities in infants can be characterized by a,
which provides a link between clinically accessible data and
the neurophysiology of the respiratory oscillator.

control of breathing; apnea; hypopnea; neural network

IT IS KNOWN THAT IN NEWBORNS and premature infants
unstable respiratory patterns tend to decline with age,
suggesting important developmental differences in re-
spiratory regulation during early postnatal life (3, 15).
A pattern of regular breathing interrupted by periods of
insufficient breathing (hypopneas) or apneas is com-
mon. The respiratory rhythm is generated in the cen-
tral nervous system by a group of respiratory neurons
that forms a neural oscillator and drives the respira-
tory muscles. It has been proposed that immaturity of
these brain stem rhythm generators (11, 13) and imma-
ture central and peripheral chemoreceptors (e.g., Ref.
12) may be the major underlying factors responsible for
apnea or hypopnea in infants. However, the relation-
ship between the maturation of respiratory-related
central and peripheral neural networks and breathing
pattern is poorly understood. This is because measure-
ments of breathing pattern rely on noninvasive tech-

niques, which have limitations regarding both the
detection and quantitation of breathing movements.
Further difficulties originate from the analysis of the
complex dynamics of breathing in infants, which is
usually arbitrary rather than being based on an under-
standing of respiratory brain stem function.

A physiologically justifiable parameter is needed to
describe the dynamics of breathing in infants for clini-
cal purposes. Recently, Szeto et al. (25) proposed that
the fetal irregular breathing pattern in lambs is similar
to fractal processes. The purpose of our study was to
further develop this concept and to apply statistical
approaches to the analysis of the breathing pattern in
newborn human infants. To determine whether the
statistical parameters derived from the breathing pat-
tern in infants are physiologically justifiable and ca-
pable of detecting maturational changes in respiratory
control, we developed a model of the neuronal respira-
tory oscillator that is able to account for the measured
data. Our analysis may provide a key to the neurophysi-
ological origins of the irregularities and their statistical
properties observed in the breathing patterns in in-
fants.

METHODS

The study included experiments and related analysis of the
data as well as modeling with involved numerical simula-
tions. First, we examined whether the irregular breathing
pattern in infants could be described by simple power law
distributions in infants as proposed by Szeto et al. (25) for
lambs and whether parameters of the distributions changed
during age, as an expression of maturation. In comparison to
term infants, we also examined whether these indexes were
different in preterm infants, who are known to be at risk of
apneas. In the modeling studies, we aimed to develop a neural
network model that could explain the fluctuations in fre-
quency and amplitude of the phrenic output with statistical
properties similar to those observed in the breathing pattern
in infants.

Experimental Study

Subjects. We analyzed 32 recordings of abdominal move-
ments in 25 preterm infants who were undergoing poly-
graphic measurements for clinical indications because of
their prematurity at a mean postconceptional age (PCA) of
40.5 6 5.2 (SD) wk and a postnatal age (PNA) of 11.7 6 6.6
wk. Eleven of these infants had been ventilated for fewer than
3 days and had no major lung problems, and 14 infants had
chronic lung disease of prematurity. None of the infants had
severe cerebral impairment or intracerebral hemorrhage.
Nine were treated with caffeine (5 mg·kg21 ·day21) because of
previous apneas. We also assessed 18 sets of abdominal
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movements in 15 healthy full-term infants at PNA of 8.2 6
4 wk. The studies were authorized by the ethical committees
of the Hammersmith Hospital (London, UK), where the data
in preterm infants were assessed, and the Leicestershire
Health Authority (Leicester, UK), where the breathing pat-
tern in the healthy term infants was examined. Parental
consent was obtained for all the studies.

Measurements. During a 2-h session of sleep, abdominal
movements were assessed by using a noninvasive sensor
system, which is based on the Hall effect (modified Densa
monitoring system, DMS 100, Densa, Clywd, UK). The DMS
100 monitoring system was tested regarding its linear proper-
ties and time constants by using a mechanical analog consist-
ing of a sinusoidal pump connected to a flow transducer
(Honeywell AWM5000 series microbridge mass airflow sen-
sor, range 0–20 l/min, sensitivity 0.2 V·l21 ·min21) and a
Laerdal mannikin, to which the DMS 100 transducer was
attached in the same manner as during the measurements in
infants. The absolute amplitude of the DMS 100 transducer
output was found to be dependent on strap tension and
position. However, once transducer position was fixed, the
transducer behaved linearly within the operating range.
Therefore, the relative volume changes resulted in propor-
tional changes in output voltage in the operating range. This
fact made it possible to compare relative (but not absolute)
changes in volume excursion even when strap tension and
position varied among subjects or during measurements in
the same infants at different ages. Regarding the frequency
response, the Hall effect transducer itself behaves as a
zero-order system; i.e., it has a flat frequency response up to
5 Hz.

To account for the fact that only relative changes within the
operating range and not absolute changes were detectable in
a linear manner, a special algorithm was designed to detect a
breath in infants. ‘‘Interbreath intervals’’ (IBIs) were defined

as the time interval between two significant tidal excursions
(Fig. 1). The window algorithm to detect a significant tidal
excursion (breath) was designed as follows: 1) abdominal
movements were recorded with 15-Hz sampling frequency; 2)
mean and SD of the tidal excursions in a time window of 120 s
were assessed; and 3) the threshold to detect a peak (breath)
was set as the mean 1 1 SD. The time intervals that defined
the IBIs were then calculated between these significant tidal
excursions. The window moved along the time series in a
nonoverlapping manner. This algorithm includes small (,1
SD) tidal excursions, which we defined as hypopneas between
two significant breaths.

Data analysis. Data sets with movement artifacts were not
included in the study. During data collection, infants under-
went several sleep cycles. Periods of different sleep stages
were not analyzed separately (see DISCUSSION).

IBIs were displayed as a function of breath number as
follows. The IBI between breaths 1 and 2 was assigned to
breath 1, the IBI between breaths 2 and 3 was assigned to
breath 2, and so on. A 120-min sequence of abdominal
movements resulted in a time series of between ,1,000 and
7,000 IBI data points. Two examples of the IBI time series
(subset of 750 IBIs) measured in the same preterm infant
with clinically severe breathing irregularities at PCA of 39 wk
and after improvement at 61 wk, are shown in Fig. 2. Both
time series demonstrate irregular breathing, with many IBI
spikes corresponding to long hypopneas. To quantify these
differences we compared the probability density distribution
functions of the IBI time series, P(IBI), in Fig. 3A, which were
obtained by normalizing the histogram of the IBIs so that the
area under the curve was one. Because of the long tail of
P(IBI) for large IBI, we also plotted P(IBI) on a log-log
scale, where the widths of the histogram bins were selected to
be equidistant on a log-log scale. For large IBIs, P(IBI)
decreases linearly on the log-log plot (Fig. 3B), which means

Fig. 1. Representative examples of ab-
dominal movements in 2 healthy in-
fants. A: irregular breathing (e.g., in
rapid-eye-movement sleep). B: quiet
tidal breathing. Threshold algorithm
was calculated from mean 1 1 SD of
abdominal signal (solid line) in a
nonoverlapping moving time window of
120 s. n, Detected breaths. Abdominal
tidal excursions that failed to reach
threshold were not counted as breaths
and led to longer interbreath intervals
(IBIs) between 2 significant tidal excur-
sions.
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that the distribution has a power law tail, which can be
described as follows

P(IBI) , IBI2a

where a is the exponent in the power law and represents the
slope of the linear regression through the long tail of the
probability density distribution on a log-log graph. If a is
small, the long tail of P(IBI) decreases very slowly. Hence, the
probability that an infant will have an hypopnea much longer
than the mean can be orders of magnitude higher than if
P(IBI) followed a normal distribution (5). With increasing a,
representing a steeper tail, the distribution of IBI will
gradually become closer to a normal distribution.

Analysis of group data. In 10 healthy term infants, 2
sequences were recorded in the same night to determine
short-term repeatability. Short-term repeatability was pre-
sented in a Bland-Altman plot and was expressed as SE of
differences between the two observation periods. To deter-
mine the effect of maturation, measurements were performed
longitudinally on two different occasions in seven preterm
and three term infants (Table 1). Two of the preterm infants
had had caffeine but on both occasions. The corresponding
values of a were compared using a paired t-test. To test the
effect of prematurity on a independent of PNA, we compared
the subgroup of 10 preterm infants in which the measure-
ments were recorded before 40 wk PCA to the group of 15
healthy infants. The two groups were significantly different
in gestational age (age at birth) and in PCA and but not in
PNA. The values of a in the groups were compared by using a
t-test.

Modeling Study

We propose a mechanism to explain how the power law
distribution of IBI in infants could originate from the neural
respiratory network in the brain stem. To reproduce the
observed irregularities, we modified the neural oscillator
model proposed by Botros and Bruce (4), which transforms
tonic neural inputs (TNI) into a regular rhythm and hence
breathing (22). The model consists of five coupled nonlinear
differential equations corresponding to the activities of five

Fig. 2. Examples of IBIs (extract of 750 IBIs) as a function of breath
number. IBI time series are shown in a preterm infant at 2 postconcep-
tional ages (PCA), 39 (A) and 61 wk (B). Note that IBI represents
interval between 2 significant tidal excursions (i.e., hypopnea) rather
than time of an apnea (see Fig. 1). Fig. 3. Probability density distribution function [P(IBI)] in linear (A)

and in log-log presentation (B). Exponent a represents slope of linear
regression fit through long tail of distribution [P(IBI),IBI2a]. a
changed from 2.07 at 39 wk to 3.55 at 61 wk.

Table 1. Subject characteristics

Groups n GA, wk PCA, wk PNA, wk a

Term infants 15 40.161.4a 48.964.5b 8.864.1c 2.8760.4d

Preterm infants 10 29.463.8a 36.162.9b 6.664.3c 2.5260.2d

Longitudinal data

1st measurement 10 31.566.8 41.263.6e 9.365.1f 2.6260.4g

2nd measurement 10 31.566.8 47.366.4e 12.665.6f 3.2260.4g

Values are means 6 SD. n, no. of infants; GA, gestational age; PCA,
postconceptional age; PNA, postnatal age; a, measure of relative risk
of insufficient breathing. In a subgroup of preterm infants, measure-
ments were made before term (40 wk). This group was significantly
different from healthy term group in GA (aP,0.001, t-test) and PCA
(bP,0.001, t-test) but not in PNA (cP50.22, t-test); P50.29, Mann-
Whitney U-test. In this preterm group, a was significantly lower
(dP,0.05, t-test), showing a weak independent effect of prematurity
on breathing pattern. In longitudinal data, PCA (eP,0.001, t-test),
PNA (fP,0.001, t-test), and a (gP,0.002, t-test) were significantly
smaller at occasion of 1st measurement.
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neuronal groups in the respiratory center. The ramp-
inspiratory neuronal group provides periodic outputs to the
phrenic nerve similar to measured data. Therefore, we solve
the network in the time domain by using Matlab (Mathwork,
Natick, MA) and, from the steady-state solution, take the
time interval between the peaks of the output of the ramp-
inspiratory neurons as proportional to IBI. However, after a
short transient period, the solution of the network is a
periodic waveform without any irregularities. Thus, to mimic
irregularities in IBI, we add a zero-mean noise to the TNI of
the first or ramp-inspiratory neuronal group (TNI1). In this
simple model (model A), we assumed that the noise remains
constant over one cycle of the oscillator, an assumption that
may be an oversimplification. Indeed, the work of Hoop et al.
(16) suggests that neural noise is not constant but does vary
within the respiratory cycle, most likely because of varying
chemoreceptor responses. We tested this hypothesis (model
B) by varying noise amplitude within the respiratory cycle.

In model A, we calculated the IBIs from the steady-state
solution, whereas in model B we continuously solved the
network without discarding the transients. The model param-
eters are summarized in Table 2. The parameters were the
same as previously described (4), except for TNI1 (see Table
2). In model A, we used a mean value of TNI1 5 0.12 with a
uniformly distributed noise (SD 5 0.07) superimposed on
TNI1, which was constant within one respiratory cycle. In
model B, we used a mean value of TNI1 5 5 with a uniformly
distributed noise (SD 5 4), which changes, on average, four
times within the respiratory cycle.

RESULTS

Experimental Study

A typical example of how breathing irregularity and
the corresponding P(IBI) change with maturation is
shown in Figs. 2 and 3, respectively. It is evident even
visually that the IBIs at PCA of 61 wk appear signifi-
cantly less irregular, with a maximum of only ,21 s
compared with ,70 s in the IBI sequence at PCA of 39
wk. Both distributions have a peak slightly above 1 s,
indicating that the primary breathing rate is just below
1 Hz. The tail of the distribution changes significantly
with maturation: a increases in the same infant with

age (from PCA 5 39 wk to PCA 5 61 wk) by almost a
factor of two (2.07 vs. 3.55).

In both the healthy and preterm infants, the power
law model provided an excellent description of the long
tails of the IBI distributions. In all subjects the mean
(6SD) correlation coefficient (r2) through the long tail
of P(IBI) was 0.973 6 0.025. On average, the linear
regression was fitted through 6.4 6 1.4 data points
(bins).

The short-term repeatability of a within a single
night was remarkably high in 10 healthy infants, as
shown in a Bland-Altman plot in Fig. 4 and expressed
by the SE of the differences of 0.04.

The values of a ranged from 2.07 to 3.80, with a
mean 6 SD of 2.74 6 0.47, and increased with PCA
(Fig. 5) but showed a large variability in both the
preterm and the term healthy infants. In longitudinal
data sets in 10 infants, a increased statistically signifi-
cantly (P 5 0.002) (Table 1). PNA was the most
important determinant factor for a (Fig. 5). In the
group of measurements performed in preterm infants
before a PCA of 40 wk, a was significantly smaller (P ,
0.05) than in the group of term healthy infants of
similar PNA, demonstrating a weak independent effect
of prematurity on a (Table 1).

Modeling Study

The IBI time series simulated by using model A are
shown in Fig. 6A. Similar to the findings in infants (cf.
Fig. 2A), model A reproduces the occurrences of high
spikes. P(IBI) also followed a power law with a 5 2.28
(Fig. 6B). However, model A may not be physiological
because TNI may fluctuate within the respiratory

Table 2. Neural network modeling

Source
Group

Target Group

TNII L-I p-I E e-I

I 0.7 1.361 0 20.729 21.8 5.044
L-I 25 2.3 0 0 0 22.2
p-I 1.719 23 1.54 0 22.15 3.989
E 1.371 20.793 21.351 1.55 0 4.140
e-I 0 22.056 22.254 22.254 0.65 2.193

Model parameters according to Botros and Bruce (4) are as follows:
I, inspiratory neuronal group; L-I, late inspiratory neuronal group;
p-I, postinspiratory neuronal group; E, expiratory neuronal group;
e-I, early inspiratory neuronal group; and TNI, tonic neural input.
Columns 1–5 show values for connection weighting factors (Wi, j ),
where i is source group and j is target group. In original Botros and
Bruce model (4), TNI in 1st or ramp-inspiratory neuronal group
(TNI1) was 5.044. In model A, we used a mean value of TNI1 5 0.12
with a uniformly distributed noise (SD50.07) superimposed on TNI1
that was constant within 1 respiratory cycle. In model B, we used a
mean value of TNI1 5 5 with a uniformly distributed noise (SD54)
that changes, on average, 4 times within respiratory cycle.

Fig. 4. Short-term repeatability in 10 healthy term infants. Differ-
ences in a of power law probability density distribution assessed
during 2 periods of 2 h in same infant are presented as a function of
mean of a of both periods (Bland-Altman plot). Dashed lines, 95%
confidence intervals. SE of differences 5 0.04.
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cycle. By using model B, in which noise changed within
the respiratory cycle, we obtained large variations in
phrenic amplitude (Fig. 7A) similar to those observed
in the measured data (see Fig. 1). By using our thresh-
old algorithm, P(IBI) showed a power law distribution
with a 5 3.46 (Fig. 7B).

DISCUSSION

Newborns and premature infants are prone to de-
velop unstable breathing patterns that disappear with
age, suggesting that there are important developmen-
tal processes in the regulation of breathing during
postnatal life (3, 11). The assessment of breathing in
infants is limited by the need to use noninvasive
techniques. Further difficulties originate from the analy-
sis of the complex dynamics of breathing in infants.
Analysis techniques are often arbitrary rather than
being based on an understanding of respiratory brain
stem function. Ideally, flow at the airway opening
should be measured to determine the amplitude of
breathing. The process of applying a measurement
device to the face is disturbing so that often abdominal
movements alone are measured to determine the breath-
ing pattern in infants. Under these conditions the
definition of hypopnea presents difficulties. Arbitrary
threshold techniques for detecting abdominal signals
are prone to error because calibrating and quantifying
absolute abdominal movements are imprecise. It is
easier to assess relative changes in abdominal move-
ments to calculate IBIs. Another problem in analyzing
complex breathing patterns is the lack of a neural
network model of the respiratory oscillator in the brain
stem that could quantitatively describe breathing ir-
regularities in infants.

In this study, we introduced a novel approach to
analyze the respiratory pattern in infants. We mea-

sured IBIs over a period of 2 h by using a statistical
threshold algorithm and found that P(IBI) followed a
power law distribution in all infants. P(IBI) can be
characterized by a single number, exponent a of the
power law, which is the slope of the long tail of the
distribution on a log-log plot. Before examining possible
mechanisms that can give rise to a power law P(IBI),
we first discuss the limitations of our methodology.

Limitations of the Method

Abdominal movement is highly irregular and diffi-
cult to describe by using an automated algorithm. The
assessment of absolute changes in tidal volume from
body surface movements depends on positioning of the
motion detectors. However, it should be possible to
assess relative changes in abdominal movement with-
out such severe constraints. The use of a threshold
algorithm to detect IBIs has advantages and disadvan-
tages. It is certainly optimal to discriminate a tidal
breathing excursion from noise (such as that produced
by the heartbeat). The absolute abdominal excursion is
dependent on the age of the infant, the position of the

Fig. 5. Exponent a as function of PCA in preterm infants (r) and
healthy term infants (s). Longitudinal data points from same
subjects are connected with lines (10 subjects). Change in a in 10
longitudinal data sets during maturation was significant (P 5 0.002,
paired t-test).

Fig. 6. A: computer simulation of IBI time series by using neural
network model of respiratory oscillator proposed by Botros and Bruce
(4) model (model A). Noise introduced in tonic neural input (TNI) of
1st or ramp-inspiratory neuronal group (TNI1) remains constant over
time, SD 5 0.07. B: P(IBI) of IBI series in A follows a power law.
Calculations involved 3,000 noise realizations.
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infant, and the relative filling of the abdomen. Position
and abdominal filling might change during the measure-
ment period. It is also questionable whether a very
small tidal excursion should be considered as a breath.
To avoid these threshold problems, we chose a statisti-
cal approach.

We designed a moving window algorithm, in which
the threshold to detect a significant breath is based on
the SD of the abdominal tidal excursions within the
window. To test the optimal length and stability of the
threshold, we simulated the target parameter a as a
function of the threshold (Fig. 8A) and the time window
length (Fig. 8B). We found that a was high and P(IBI)
was close to a normal distribution if we chose the
threshold to be 0 SD above the mean. In this case the
IBI pattern was mainly influenced by noise. If the
threshold was increased up to 1 SD above the mean of
the single window, a decreased rapidly to a value of 3
and remained relatively stable up to a threshold of
1.5 SD, where the power law broke down and only

occasional breaths were detected. We chose 1 SD as a
threshold that is between these two extremes. The
optimal time-window length was determined in a sim-
ilar way. At time windows over 1 min, a remained
stable. A window length of 120 s was optimal because
a was stable and the algorithm was still sufficiently
flexible to account for slow (.120-s) changes in the
absolute value of the abdominal excursion caused by
change in posture of the infant or by change in abdomi-
nal volume. The use of abdominal movements to assess
IBIs seemed justified because the contribution of rib
cage movement to tidal volume only seems to change
very little in the first 2 yr of life and probably not
significantly over the first 5 mo (14). The disadvantage
of the algorithm is that it is unable to distinguish
between complete apnea and hypopnea with mini-
mal tidal excursion of ,1 SD. This makes the al-
gorithm more useful in characterizing the degree of
breathing irregularities rather than in detecting an
apnea.

Fig. 7. A: computer simulation of phrenic output time series by using
neural network model of respiratory oscillator proposed by Botros
and Bruce (4) (model B). Noise introduced in TNI1 changes, on
average, 4 times within respiratory cycle. B: P(IBI) of time series in A
were analyzed by using threshold algorithm proposed in METHODS.
Similar to model A, P(IBI) follows a power law. Calculations involved
5,000 noise realizations.

Fig. 8. Robustness of threshold algorithm. Example of exponent a of
power law probability density distribution is shown as a function of
threshold above mean (A) and as a function of length of threshold
window (B) in a healthy infant. Vertical lines (1 SD, 120 s), optimized
specifications.
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Central and Obstructive Hypopneas

By measuring the abdominal movements, obstruc-
tive hypopnea could be missed. However, most hypop-
neas involving obstructive components are of mixed
type (central and obstructive) (7, 18), which can be
detected by this method. If the detection of obstructive
hypopneas were the focus of a future study, the same
algorithm could potentially be used to analyze nasal
flow in a similar way, although abdominal movements
are technically easier to assess and therefore more
suitable for measurements under natural conditions at
home.

Sleep Stages

During a measurement period of 2 h, infants cer-
tainly undergo several sleep cycles involving different
sleep stages (9). Breathing pattern in infants is depen-
dent on sleep stage (9). The synchrony of chest and
abdominal tidal excursions depends on the sleep stage
(10). Although our threshold algorithm accounts for
slow (.120-s) changes in the relative contribution of
chest wall and abdominal movements, a small error
might be introduced into the IBI assessment if the
abdominal movements are measured during asynchro-
nous paradoxical movements. This error, however, is
expected to be minimal if the threshold to detect a
breath is chosen at 1 SD above the mean and not close
to the mean. To investigate the effect of sleep stage on
P(IBI), shorter sampling periods during a single sleep
state should be analyzed. This, however, could compro-
mise the reliability of the estimated exponents. We
needed to include at least 1,000 IBI values in the
calculations of P(IBI). Therefore, the value of a has to
be considered as an averaged mean of breathing pat-
tern over several sleep stages. The question arises
whether the change in a during maturation is mainly
determined by changes in sleep-stage pattern with age.
Unfortunately, this question cannot presently be an-
swered. During rapid-eye-movement (REM) sleep,
breathing pattern is more irregular. Although the pro-
portion of REM sleep decreases slightly with age in
healthy infants (31.6 6 6.3% at 3 wk, 24.7 6 4.3% at
6 wk, and 28.0 6 5.4% at 3 mo of age), the relative
amount of quiet sleep changes from 31 6 4.6% at 3 wk
to 22.5 6 8.6% at 3 mo of age (6). A decreased amount of
REM sleep with age would theoretically result in more
regular breathing, which is consistent with our data;
however, this does not explain the fact the IBI irregulari-
ties are power law distributed.

Power Law Distribution of IBIs

Power law behavior was found in the breathing
patterns in preterm infants as well as term infants.
Although a was highly reproducible within the same
individual in healthy infants during a single night, the
interindividual variability was large in both the hetero-
geneous group of preterm infants as well as in the
healthy term infants. Despite the high interindividual
variability, there was a clear tendency for a to increase
with PNA in the cross-sectional data set. More impor-

tantly, a increased statistically significantly in the
longitudinal data sets. This indicates that, although
maturation preserved the power law form, a was
sensitive to age as an expression of maturation. For
small values of a (,3), the tail of P(IBI) extends to large
IBIs, and hence the probability that an infant will have
a hypopnea much longer than the mean can be orders of
magnitude higher than if P(IBI) followed a normal
distribution (5). With increasing a, the tail of P(IBI)
decreases steeply, and P(IBI) will gradually become
closer to a normal distribution. We note that for power
law distributions, there is a significant change in the
nature of the distribution as a reaches 3. For a , 3, the
distribution has an infinite second moment (5), and
hence it is unbounded and dominated by its power law
tail. For a . 3, the distribution has a finite second
moment (5). Therefore, the distribution has the same
general statistical properties as a normal distribution.
As a consequence, the occurrence of large IBIs is
significantly reduced.

We found that a was sensitive to age in both term and
preterm infants. The question is whether prematurity
itself influences the power law distribution of IBIs. In a
group of preterm infants who had their measurements
recorded before PCA of 40 wk, a was significantly lower
than in the group of healthy term infants of similar
PNA (Table 1). This significance was relatively weak,
possibly because the variability of a within the group of
preterm infants, representative of daily clinical prac-
tice, was rather large.

Various authors have speculated about the origins of
power law-distributed time series in biological systems
(19, 25, 26). In particular, Szeto et al. (25) measured the
distribution of IBIs in fetal lambs. They found that
exponent a in P(IBI) ranged from 1.67 to 2.53. This
range is close to our a values in preterm infants with
low PCA. In contrast to our results, Szeto et al. (25) did
not find a clear correlation between a and maturation.
The conclusion from their study was that fetal breath-
ing dynamics show fractal characteristics. However,
mechanisms that can generate power law P(IBI) and
fractal behavior of the IBI time series still remain
unclear.

Apparent irregularities in a time series (e.g., in Fig.
2) can be the result of either chaotic behavior or noise in
the system. Our data do not support the possibility of
chaotic behavior because, except for three subjects with
low PCA, the Lyapunov exponents (23) calculated from
the IBI time series were negative. We thus hypoth-
esized that introducing appropriate type and amount of
noise in a model of the respiratory oscillator in the
brain stem may produce variations in IBI and in tidal
excursion with statistical properties similar to those
obtained from the breathing pattern in infants. There
is evidence from animal models that a three-phasic
model of the respiratory oscillator is similarly appropri-
ate for describing the breathing cycle in newborns and
in adults (17). There is also evidence of noise in the
respiratory rhythm generator. The firing of individual
neurons has been found to be a probabilistic process
with intrinsic noise (1). Recently, Hoop et al. (16)
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demonstrated the presence of noise in respiratory-
related neural activity in the brain stem of neonatal
rats. Thus, to reproduce the observed irregularities, we
introduced noise in the neural oscillator model pro-
posed by Botros and Bruce (4).

Our models demonstrate indeed that noise in a
neural network oscillator can lead to a power law
distribution of IBIs in the breathing pattern and irregu-
larities in tidal volume (see Figs. 6 and 7). We are now
in the position to explore what mechanisms in the
network oscillator can lead to changes in exponent a
similar to those occurring with maturation. One possi-
bility is that the level of noise in the neural network
decreases with age in infants. Tonic inputs into the
neural network are likely to be related to the vagal
feedback from peripheral receptors. It is known that
myelination in the vagus nerve in the newborn is a
heterogeneous process and increases with age (24).
Myelination determines the speed of propagation of
action potentials, and hence noise at the effector locus
(tonic inputs into the neural network) could occur due
to the heterogeneity of transmission times in a nerve
consisting of a bundle of parallel neurons. Neverthe-
less, to our knowledge, there is no direct evidence of
decreasing noise during maturation in human infantile
neural networks.

Another possibility is that the amplitude of the tonic
input into the neural respiratory network changes with
maturation. Indeed, Sachis et al. (24) postulated that
with increasing myelination the input from the vagus
nerve into the respiratory oscillator may become stron-
ger in older infants in comparison with immature
young infants. Indirect evidence in human infantile
brain stem function may be derived from the auditory
system, which is in a neighborhood close to the respira-
tory oscillator and shows increasing amplitudes of
acoustic-evoked potentials with age (13). Further evi-
dence might be derived from intracellular recordings in
the respiratory center of the brain stem of newborn
piglets (17). We wondered, therefore, whether changes
in the amplitudes of tonic inputs into the neural
respiratory network could explain changes in a.

In a noise-free case, IBI becomes a function of the
amplitude of TNI1. Examining the input-output (TNI1-
IBI) relationship of the respiratory oscillator model, we
found that, as TNI1 decreases, the IBI becomes exces-
sively longer, reaching a critical region where IBI
diverges. If we add a uniformly distributed noise to
TNI1 so that it explores this critical region of the
oscillator where IBI diverges, i.e., it is subject to a
power law transformation with exponent µ, then the
resulting fluctuations in IBI will have a power law
distribution with exponent a 5 1 1 1/µ (2). Although
the TNI1-IBI curve in Fig. 9 is not exactly a power law,
if the SD of the noise is small, then, in the vicinity of the
mean of TNI1, a power law fit of the form IBI 5
A*(TNI1)µ is a reasonable approximation (Fig. 9, inset).
Thus, for small SD, the uniform noise in TNI1 is
transformed into a power law-distributed noise. How-
ever, exponent a obtained from the simulations may be
slightly different from the theoretical a 5 1 1 1/µ

relationship, being determined by the average of the
local slopes on the TNI1-IBI curve sampled by TNI1.
Our model is also capable of accounting for maturation.
Increasing the mean of TNI1 results in a decreasing µ
(Fig. 9), which in turn increases a. Accordingly, we
conclude that during maturation TNI1 may become
larger in accordance with Sachis et al. (24), resulting in
a shift of the mean of TNI1 away from the region where
IBI diverges. Indeed, if we increase the mean TNI1 in
model A, we find again a power law-distributed IBI
time series with a 5 3.57, which is in excellent agree-
ment with P(IBI) in Fig. 3 at PCA 5 61 wk.

Before physiological conclusions can be drawn, we
note the following. The correspondence between the
various neural functions and the parameters of the
model is relatively well understood (4, 20–22), and the
original model accounts for much of the neurophysiol-
ogy of respiratory control in newborns (8, 17). However,
the influence of the various chemoreceptor and stretch-
receptor inputs on TNI is heterogeneous and cannot be
separated easily. Although the above mechanism of
noise operating on TNI1, which is a function of matura-
tion, can quantitatively explain the changes in a with
age as an expression of maturation, there could, of
course, be a number of other factors influencing P(IBI)
and a. For example, we only examined the effect of tonic
input to the ramp-inspiratory neuronal group. Other
tonic inputs simultaneously varying within the respira-
tory cycle would certainly influence IBI. Additionally,
we used white noise, whereas it has been observed that
noise in respiratory neurons is correlated (16). The
amount of time correlation in the noise may also affect
the IBIs because this correlation would determine how
much time, on average, the oscillator would spend in
the neighborhood of the critical region where IBI
diverges. Because of the complicated interactions of all

Fig. 9. IBI as a function of TNI1 diverges as TNI1 is decreased. In
vicinity of TNI1 5 0.12 a power law reasonably fits that part of
singularity curve that is sampled by noisy TNI1 with SD 5 0.1 (inset).
Slope of this fit, µ, is 1, which, according to theoretical a 51 1 1/µ
relationship (see Ref. 2), predicts a 5 2. Also, note that moving mean of
TNI1 away from singularity to TIN1 5 0.3 results in µ 5 0.5 and a 5 3.
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these effects, in this study our goal was to demonstrate
how irregularities in IBI can lead to a power law P(IBI)
and how exponent a can be related to the neurophysiol-
ogy of the oscillator.

In conclusion, we characterized the complex pattern
of infant breathing with a single number, a, which
facilitates the analysis of easily accessible data in
infants. Because a is sensitive to age as an expression
of maturation and because a can easily be measured
even under home-based-monitoring conditions, it has
the potential to be used as a simple index for evaluating
the likelihood of long hypopneas in various groups of
infants, i.e., infants with inherited or acquired neurode-
velopmental problems, such as preterm infants, infants
suffering from birth asphyxia, or those who are at risk
for sudden infant death syndrome for other reasons. We
also provided a computational model that can explain
how the respiratory neural oscillator network produces
irregularities in breathing frequency and tidal ampli-
tude with power law properties. Future studies will be
necessary to find links between neurophysiological
mechanisms of respiratory control and clinically acces-
sible measurements of the complex breathing pattern.
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