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Dynamics of Ripple Formation in Sputter Erosion: Nonlinear Phenomena
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Many morphological features of sputter eroded surfaces are determined by the balance betwee
ion-induced linear instability and surface diffusion. However, the impact of the nonlinear terms on
the morphology is less understood. We demonstrate that, while at short times ripple formation is
described by the linear theory, after a characteristic time the nonlinear terms determine the surface
morphology by either destroying the ripples or generating a new rotated ripple structure. We show that
the morphological transitions induced by the nonlinear effects can be detected by monitoring the surface
width and the erosion velocity.

PACS numbers: 68.55.–a, 05.45.–a, 64.60.Cn, 79.20.Rf
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The morphological evolution of ion sputtered surface
has generated much experimental and theoretical inter
in recent years. As a result, there is extensive eviden
that ion bombardment can result in ordered surface ri
ples, or lead to kinetic roughening, depending on the e
perimental conditions. These experimental results, whi
cover amorphous and crystalline materials (SiO2 [1]), and
both metals (Ag [2]) and semiconductors (Ge [3], Si [4,5]
have motivated extensive theoretical work aiming to un
cover the mechanism responsible for ripple formation an
kinetic roughening. A particularly successful model ha
been proposed by Bradley and Harper (BH) [6], in whic
the heighth�x, y, t� of the eroded surface is described b
the linear equation

≠th � nx≠2
xh 1 ny≠2

yh 2 K≠4h , (1)

where nx and ny are effective surface tensions
generated by the erosion process (nx,y � faVY0G2x,y ,
wheref is flux, a is ion energy penetration depth,V is
atomic volumn,Y0 is sputter yield, andG2 is a coefficient
governing the erosion rate dependence on the local s
face curvature), andK is the surface diffusion constant
(K � DsCgV2�kBT , where Ds is surface diffusivity,
C is concentration,g is surface free energy, andkBT
is thermal energy). Here,ny , 0 and nx can change
sign as the angle of incidence of the ions is varied. Th
balance of the unstable erosion term�2jnj≠2h� and the
smoothening surface diffusion term�2K≠4h� generate
ripples with wavelength

�i � 2p

q
2K�jnij , (2)

where i refers to the direction (x or y) along which the
associatedni (nx or ny) is the largest. While successfu
in predicting the ripple wavelength and orientation [7
this linear theory cannot explain a number of experimen
features, such as the saturation of the ripple amplitu
[8–10], the observation of rotated ripples [11], and th
appearance of kinetic roughening [12,13]. Recently, it h
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been proposed [14] that the inclusion of nonlinear term
and noise (both of which were derived from Sigmund
theory of sputtering [15]) can cure these shortcoming
Consequently, Eq. (1) has to be replaced by the no
Kuramoto-Sivashinsky equation (KS) [16]

≠th � nx≠2
xh 1 ny≠2

yh 2 Kx≠4
xh 2 Ky≠4

yh 2 Kxy≠2
x≠2

yh

1
lx

2
�≠xh�2 1

ly

2
�≠yh�2 1 h�x, y, t� , (3)

wherelx andly describe the tilt-dependent erosion rat
proportional to the ratio between flux and the penetrati
depth,f�a, andh�x, y, t� is an uncorrelated white noise
with zero mean, mimicking the randomness resulting fro
the stochastic nature of ion arrival to the surface [14,17

While it is expected that the nonlinear theory incorp
rates most features of ripple formation and kinetic roug
ening, the morphological and dynamical features of t
surface described by it are known only in certain sp
cial cases. For example, when the nonlinear terms a
the noise are neglected (lx � ly � 0, h � 0), Eq. (3)
reduces to the linear theory (1) and predicts ripple fo
mation. It is also known that the isotropic KS equa
tion (nx � ny , 0, Kx � Ky � Kxy�2, and lx � ly)
asymptotically (for large time and length scales) predic
kinetic roughening, with exponents similar to that seen e
perimentally in ion sputtering [12]. For positivenx and
ny, Eq. (3) reduces to the anisotropic Kardar-Parisi-Zha
equation [18], whose scaling behavior is controlled by t
sign oflxly [19]. Finally, recent integration by Rost and
Krug [20] of the noiseless version of Eq. (3) provide
evidence that whenlxly , 0, new ripples, unaccounted
for by the linear theory, appear and their direction is r
tated with respect to the ion direction [20]. However,
is not known if this rotated phase survives in the presen
of noise,h. These special cases illustrate the comple
ity of the morphological evolution predicted by Eq. (3
Furthermore, the nonlinear effects have been largely
explored experimentally due to lack of theoretical pr
dictions of the experimentally detectable signature th
© 1999 The American Physical Society
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distinguishes it from the linear regime. To be able to
make specific predictions on the morphology of ion-
sputtered surfaces, we need to gain a full understanding
of the nonlinear behavior predicted by (3), going beyond
the special cases, that are often experimentally irrelevant.
In this paper we integrate numerically Eq. (3), aiming to
uncover the dynamics and the morphology of the surfaces
for different values of the parameters. We demonstrate
a clear separation of the linear and nonlinear behavior.
For short erosion times, the ripple development and ori-
entation follow the predictions of the linear theory of BH.
However, after a well-defined crossover time, which de-
pends on the coefficients of Eq. (3), the surface morphol-
ogy is determined by the nonlinear terms. We find that
when lxly . 0 the nonlinear terms destroy the ripple
morphology and lead to rough phase governed by kinetic
roughening. However, when lxly , 0, they result in a
long and apparently rough transient regime, followed by a
new morphology of rotated ripples, as seen in the noise-
less KS equation, indicating that the rotated ripple phase is
stable against the noise and thus could be observed experi-
mentally. We show that these morphological transitions
can be detected by monitoring the surface width or ero-
sion velocity, quantities that can be measured more easily
in situ. Finally, we discuss the impact of our result on
current and future experimental work.

The direct numerical integration is carried out by dis-
cretizing the continuum equation of (3), using the standard
discretization techniques [21,22]. We choose a temporal
increment Dt � 0.01 and impose periodic boundary
conditions h�x, y, t� � h�x 1 L, y, t� � h�x, y 1 L, t�,
where L 3 L is the size of the substrate. We choose the
noise to be uniformly distributed between �21�2, 1�2�,
and perturb the initial flat configuration with the noise.
Since the sign of the nonlinear terms plays a significant
role in defining the surface morphology, we discuss
separately the lxly . 0 and lxly , 0 cases.

lxly . 0—A general feature of systems such as
Eq. (3) is that the nonlinear terms do not affect the surface
morphology or dynamics until a crossover time t has
been reached. Thus, we expect that for early times, i.e.,
for t , t, the surface morphology and dynamics are
properly described by the linear theory. To demonstrate
this separation of the linear and nonlinear regimes, in
Fig. 1 we show the time dependence of the surface
width defined as W2�L, t� � 1

L2

P
x,y h2�x, y, t� 2 h̄2

and the mean height as h̄ �
1
L2

P
x,y h�x, y, t�. We find

that, for t , t, the width W increases exponentially
while the mean height stays constant at h̄ � 0. Indeed,
both of these findings are consistent with the predic-
tions of the linear theory: W , being proportional to
the ripple amplitude, according to Eq. (1) increases as
W � exp�nt��2�, and the linear terms do not change the
mean height of the surface. Furthermore, inspecting the
surface morphology, we find that in this regime the ripple
wavelength and orientation are also correctly described
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FIG. 1. Time evolution of (a) the surface width W2 and
(b) the mean height h̄ for the parameters nx � 20.0001,
ny � 20.6169, Kx � Ky � Kxy�2 � 2. The different curves
correspond to different values of lx � ly � l. In (a), from
top to bottom, the curves correspond to l � 0, 21025, 21024,
21023, 21022, and 21021, respectively. In (b), from bottom
to top, they correspond to l � 21025, 21024, 21023, 21022,
and 21021, respectively. Inset (a): the crossover time t,
estimated from (a), is shown as a function of lnjlj. Inset
(b): plot of lnjyj versus lnjlj. The dotted line has a slope
� 2 1.07, implying y � 1�l.

by the linear theory. For example, for the parameters
nx � 20.0001, ny � 20.6169, Kx � Ky � Kxy�2 � 2,
and lx � ly � 20.001, according to (2), the ripple
wavelength along the y axis is �y � 16 and along the x
axis is �x � 1257. Since the dominant wavelength is
determined by the growth rate � exp�nt��2�, the smaller
wavelength, i.e., �y , will dominate. As Fig. 2a shows,
for a system of size 64 3 64 we observe four ripples
aligned along the x axis, in agreement with the previous
prediction. As a second example, we consider the case
nx � 21.2337, ny � 20.0001, Kx � Ky � Kxy�2 � 1,
and lx � ly � 20.001, for which we expect ripples of
wavelength �x � 8, smaller than �y � 889. In this case,
as Fig. 2b shows, we observe eight ripples aligned along
the y axis.

While the early time behavior is correctly predicted
by the linear theory, beyond the crossover time t the
nonlinear terms become effective. One of the most striking
consequence of these terms is that the surface width
stabilizes rather abruptly (see Fig. 1). Furthermore, the
ripple pattern generated in the linear regime disappears,
and the surface exhibits kinetic roughening. A typical
3487
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FIG. 2. Grey-scale plot of a surface of size 64 3 64 with
the parameter sets: (a) nx � 20.0001, ny � 20.6169, Kx �
Ky � Kxy�2 � 2, and lx � ly � 20.001 at t � 2 3 104; (b)
nx � 21.2337, ny � 20.0001, Kx � Ky � Kxy�2 � 1, and
lx � ly � 20.001 at t � 2 3 103. Equation (2) predicts the
wavelength �y � 16 for (a) and �x � 8 for (b). (c) The surface
configuration at time t � 5 3 105 for the parameter set used
in (a).

surface morphology, demonstrating the absence of ripples,
is shown in Fig. 2c. The crossover time t from the linear
to the nonlinear behavior can be estimated by comparing
the strength of the linear term with that of the nonlinear
term. Let the typical height at the crossover time t

be W0 �
p

W2�L, t�. Then, from the linear equation
we obtain W0 � exp�nt��2�, while from ≠th � l�≠h�2

we estimate W0�t � lW2
0 ��2. Combining these two

relations we obtain

t � �K�n2� ln�n�l� . (4)

In this expression, n, K , and l refer to the direction
perpendicular to the ripple orientation. The predicted l

dependence of t is confirmed in the inset of Fig. 1a.
Another quantity that reflects the transition from the linear
to the nonlinear regime is the erosion velocity y � ≠t h̄.
The main contribution to the erosion velocity comes from
a constant erosion rate 2y0, which has been omitted
from (1) and (3), since it does not affect the surface
morphology [6,14]. However, in addition to y0, the mean
height is also modified by the nonlinear terms, lx�≠xh�2

and ly�≠yh�2. In the following for simplicity, we neglect
the y0 term, since its value does not depend on the
surface morphology and it is constant throughout the
erosion process. The nonlinear terms act to decrease
the mean height in the case of lx , 0 and ly , 0.
We can estimate the surface velocity as y � lW2

0 ��2 �
n3��Kl� using W0 � n�l. This dependence of y on
l is consistent with the numerical results (shown in the
inset of Fig. 1b). In this regime �t . t� the surface
exhibits kinetic roughening, i.e., the surface width should
increase either logarithmically (when l � 0) or as a power
law (when l fi 0) [19,23]. However, compared with
the exponential increase in the early regime �t , t�, this
dependence is hardly observable. The simulation times
required to investigate the asymptotic scalings of W with
t are currently prohibitive.

lxly , 0—As Fig. 3a shows, we again observe a
separation of the linear and nonlinear regimes, however,
3488
FIG. 3. (a) Time evolution of the mean height h̄ (dashed
line, left linear scale) and the surface width (solid line, right
logarithmic scale) for the parameters nx � 20.6169, ny �
20.01, Kx � Ky � Kxy�2 � 2, lx � 1, and ly � 24. The
dotted lines separate the three regimes discussed in the text.
(b) The dependence of jyj on the nonlinear terms jlx 1 lyj
for the same parameters used in (a). The dotted line has a
slope � 2 1.02, implying y � 1��l1 1 l2�.

we find that the morphology and dynamics of the surface
in the nonlinear regime are quite different from the case
lxly . 0. In regime I, for early times �t , t�, the
surface forms ripples (see Fig. 4a), whose wavelength and
orientation are correctly described by the linear theory.
After the first crossover time t, given by Eq. (4), the
surface width is stabilized, and the ripples disappear (as
shown in Fig. 4b). After t, the system enters a rather
long transient regime that we call the regime II. Here,
the surface is rough, and no apparent spatial order is
present. We often observe the development of individual
ripples, but they soon disappear, and no long-range order
is present in the system. However, at a second crossover
time t2, a new ripple structure suddenly forms (as shown
in Fig. 4c) in which the ripples are stable and rotated
with an angle uc to the x direction. The angle uc

has the value uc � tan21
p

2lx�ly (or tan21
p

2ly�lx)
[20], which can be calculated by moving to a rotated
frame of coordinates that vanishes the nonlinear term
in the transverse direction. Indeed, as Fig. 4c shows,
the observed angle is in excellent agreement with uc �
tan21�1�2� for lx � 1 and ly � 24. We also find that
the time the system spends in regime II fluctuates from
system to system, thus t2 has a wide distribution. The
transitions between the three regimes can be detected by

FIG. 4. Grey-scale plot of a surface of size 64 3 64 with the
parameter set used in Fig. 3, showing the surface morphologies
at t � 104 in regime I (a), t � 2 3 105 in regime II (b), and
t � 107 in regime III (c).
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monitoring the surface width W (Fig. 3a): in regime I, the
width increases exponentially, as predicted by the linear
theory; it is approximately constant but highly fluctuating
in regime II, and suddenly increases and stabilizes in
regime III. Note that the amplitude of the rotated ripples
in regime III is much larger than in regime II, a rather
attractive feature for possible applications as patterned
templates for various microelectronic applications.

The demonstrated morphological transitions generate an
anomalous behavior in h̄ as well. As Fig. 3a shows, the
mean height is zero in the linear regime, increases as the
ripples are destroyed in regime II, and decreases with a
constant velocity in regime III. In order to understand
this complex behavior, we consider a specific example, for
which the surface morphologies are shown in Fig. 4. For
this parameter set, ripples are aligned along the y axis in
the region I, because �x ø �y . Thus, the contribution of
the �≠xh�2 is much larger than that of �≠yh�2, even though
jlxj , jlyj, and the surface height increases due to the
term lx�≠xh�2 with lx . 0 in regime II. However, as the
ripples are destroyed by the nonlinear effects, the contribu-
tion of the �≠yh�2 term increases, and eventually ly�≠yh�2

becomes larger than lx�≠xh�2, forcing the mean height to
decrease because ly , 0. The velocity in regime III is de-
termined by the nonlinear coefficient in the direction along
the ripples, which reduces to lx 1 ly after the coordinate
transformation to the rotated ripple direction. This predic-
tion is in good agreement with the results of Fig. 4, which
demonstrates that y � 1��lx 1 ly�.

The clear separation of the linear and the non-
linear behavior, which holds for both signs of lxly ,
has a direct impact on the experimental observations.
Numerous experiments have observed the development of
ripples whose wavelength and orientation are in good
agreement with the prediction of the linear theory [1–
3,5,7]. Based on our results, we expect that these experi-
ments were in the t , t regime, where indeed the linear
theory fully describes the system. However, recent
results have provided detailed experimental evidence of
ripple amplitude stabilization [8–10], a clear sign of the
presence of nonlinear effects. Furthermore, it was found
that the different W versus t curves can be collapsed
by rescaling time with a factor n2�K and amplitude
with

p
n�2K [9]. Indeed, this is in excellent agreement

with our prediction [Eq. (4)]. Finally, since the values
of n and l can be tuned by changing the ion energy
and the angle of incidence, and K can be tuned with
the temperature, the values of t and t2 can be changed
continuously, and thus our predictions on the morpholog-
ical transition between the linear and nonlinear regimes
could be tested experimentally. Furthermore, the detailed
morphological evolution uncovered here, combined with
earlier calculations that connect the coefficients in Eq. (3)
to the numerical values of the parameters describing
the ion-bombardment process [6,14,17], offer a detailed
roadway that can guide further experiments and facilitate
the use of ion sputtering for surface patternings.
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