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Controllability of multiplex, multi-time-scale networks
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The paradigm of layered networks is used to describe many real-world systems, from biological networks to
social organizations and transportation systems. While recently there has been much progress in understanding
the general properties of multilayer networks, our understanding of how to control such systems remains limited.
One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time
scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here
we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex
networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal
is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum
number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale,
then the network structure of both layers equally affect controllability. In the presence of time-scale separation,
controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference
increases up to a critical time-scale difference, above which Ni remains constant and is completely determined
by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard
to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer
operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical
value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the
longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect
time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling
how our ability to control real interacting complex systems is affected by a variety of sources of complexity.

DOI: 10.1103/PhysRevE.94.032316

I. INTRODUCTION

Over the past two decades, the theory of networks proved
to be a powerful tool for understanding individual complex
systems [1,2]. However, it is now increasingly appreciated that
complex systems do not exist in isolation, but interact with each
other [3,4]. Indeed, an array of phenomena—from cascading
failures [5,6] to diffusion [7]—can be fully understood only if
these interactions are taken into account. Traditional network
theory is not sufficient to describe the structure of such
systems, so in response to this challenge, the paradigm of
multilayer networks is being actively developed. Here we study
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a fundamental, yet overlooked, aspect of multilayer networks:
Each individual layer can operate at a different time scale.
Particularly, we address the problem of controlling multilayer,
multi-time-scale systems focusing on two-layer multiplex
networks. Recently, significant efforts have been made to
uncover how the underlying network structure of a system
affects our ability to influence its behavior [8–16]. However,
despite the appearance of coupled systems from infrastructure
to biology, the existing literature—with a few notable excep-
tions [17–20]—has focused on control of networks in isolation,
and the role of time scales remains unexplored.

Control of multilayer networks is important for many
applications. For example, consider a CEO aiming to lead a
company consisting of employees and management. Studying
the network of managers or the network of employees in
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isolation does not take into account important interactions
between the different levels of hierarchy of the company. On
the other hand, treating the system as one large network ignores
important differences between the dynamics of the different
levels, e.g., management may meet weekly, while employees
are in daily interaction. In general, the interaction of time
scales plays an important role in organization theory [21].
Alternatively, consider gene regulation in a living cell. External
stimuli activate signaling pathways which, through a web
of protein-protein interactions, affect transcription factors
responsible for gene expression. The activation of a signaling
pathway happens on the time scale of seconds, while gene
expression typically takes hours [22]. As a third example,
consider an operator of an online social network who wants to
enhance the spread of certain information by interacting with
its users. However, a user may subscribe to multiple social
networking services and may opt to share news encountered
in one network through a different one, out of reach of the
operator. The dynamics of user interaction on different web
sites can be very different depending on user habits and the
services offered [23–25]. For example the URL shortening
service Bitly reports that the half-life of shared links depends
on the social networking platform used: Half the clicks on a
link happened within 2.8 h after posting on Twitter, within
3.2 h on Facebook, and within 7.4 h on YouTube [26].

Common features of these examples are that (i) each
interacting subsystem is described by a separate complex
network; (ii) the dynamics of each subsystem operate on
a different, but often comparable time scale; and (iii) the
external controller directly interacts with only one of the
subsystems. Here we study the control properties of a model
that incorporates these common features, yet remains tractable.
More specifically, we study discrete-time linear dynamics on
two-layer multiplex networks, meaning that we assume one-to-
one coupling between the nodes of the two layers. This choice
ensures both analytical tractability and the isolation of the role
of time scales from the effect of more complex multilayer
network structure. Identifying the underlying mechanisms
that govern the controllability of this simple model provides
crucial insight into disentangling how our ability to control
real interacting complex systems is affected by a variety of
sources of complexity.

So far only limited work investigated controllability of
multilayer networks. Menichetti et al. investigated the control-
lability of two-layer multiplex networks governed by linear
dynamics such that the dynamics of the two layers are not
coupled, but the input signals in the two layers are applied
to the same set of nodes [18]. Yuan et al. identified the
minimum number of inputs necessary for full control of
diffusion dynamics, allowing the controller to interact with
any layer [19]. Zhang et al. investigated the controllable
subspace of multilayer networks with linear dynamics without
time-scale separation if the controller is limited to interact
with only one layer; showing that it is more efficient to
directly control peripheral nodes than central ones [20]. Here
we also limit the controller to one layer, yet by exploring the
minimum input problem, we offer a direct metric which allows
us to compare our findings to previous results for single-layer
networks [10]. More so, the key innovation of our work is that

we take into account the time scale of the dynamics of each
layer, a mostly overlooked aspect of multilayer networks.

It is worth mentioning the recent work investigating the
related, but distinct problem of controllability of networks
with time-delayed linear dynamics [27]. The key difference
between time-delay and time scale difference is that for time-
delayed dynamics the state of a node will depend on some
previous state of its neighbors; however, the typical time to
change the state of a node remains the same throughout the
system. While in case of time-scale difference, the typical time
needed for changes to happen can be different in different parts
of the system.

In the next section, we introduce a simple model that
captures some common properties of multilayer networks and
we describe the problem setup. In Sec. III, we develop a
theory to determine the minimum number of inputs required
for controlling multiplex, multi-time-scale networks with
discrete-time linear dynamics relying on graph combinatorial
methods. In Sec. IV, we use networks with tunable degree
distribution to systematically uncover the role of network
structure and time-scale separation. We study three scenarios:
no time-scale separation, layer I operates faster, and layer II
operates faster. Finally, in Sec. V we provide a discussion of
our results and we outline open questions.

II. MODEL DEFINITION

We aim to study the controllability of coupled complex
dynamical systems with the following properties: (i) each
subsystem (layer) is described by a complex network; (ii) the
operation of each layer is characterized by a different time
scale; and (iii) the controller only interacts directly with one of
the layers. We propose a model that satisfies these requirements
and yet is simple enough to remain tractable. We focus on two-
layer multiplex systems, meaning that there is a one-to-one
correspondence between the nodes of the two layers.

The model is defined by a weighted directed two-layer
multiplex network M which consists of two networks LI and
LII called layers and a set of links EI,II connecting the nodes of
the different layers. Each layer Lα (where α ∈ {I,II}) consists
of a set of nodes Vα = {vα

1 ,vα
2 , . . . ,vα

N } and a set of links Eα ,
where a directed link (vα

i ,vα
j ,wα

ij ) ∈ Eα is an ordered node
pair and a weight representing that node vα

i influences node
vα

j with strength wα
ij . The two layers are connected by link set

EI,II = {(vI
i ,v

II
i ,w

I,II
i )|i = 1,2 . . . ,N}; in other words, there is

directed one-to-one coupling from layer I to layer II [Fig. 1(a)].
Although the links are weighted, the exact values of the weights
do not have to be known for our purposes.

Our goal is to control the system by only interacting directly
with layer I. We study linear discrete-time dynamics,

xI(t) = AIxI(t − τI) + Bu(t − τI) if (t mod τI) = 0,

xII(t) = AIIxII(t−τII) + �τI (t)DxI(t−τI) if (t mod τII) = 0,

(1)

where xI(t) and xII(t) ∈ RN represent the state of nodes in
layers I and II; the matrices AI and AII ∈ RN×N are the
transposed weighted adjacency matrices of layers I and II,
capturing their internal dynamics. The weighted diagonal
matrix D ∈ RN×N captures how layer I affects layer II.
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(a) (b)

(c) (d)

FIG. 1. Structural controllability of two-layer multiplex networks. (a) A two-layer network. (b)–(d) To determine Ni, we construct the
dynamic graph representing the time evolution of the system from t0 = 0 to t1 = max(τI,τII). The system is controllable only if all nodes at t1
(blue) are connected to nodes at t0 or nodes representing control signals (green) via disjoint paths (red). (b) In case of no time-scale separation
(τI = τII = 1), each disjoint control path consists of a single link, yielding Ni = 2. (c) If layer I updates twice as frequently as layer II (τI = 1,
τII = 2), we are allowed to inject control signals at time steps t = 0 and 1, reducing the number of inputs to Ni = 1. (d) On the other hand, if
layer II is faster (τI = 2, τII = 1), layer II needs to support longer control paths, yielding Ni = 3.

Vector u(t) ∈ RM provides the set of independent inputs
and the matrix B ∈ RN×M defines how the inputs are coupled
to the system. To differentiate between the function u(t) and
an instance of the function at a given time step, we refer to a
component ui(t) of vector u(t) as an independent input, and
we call its value at time step t ′, ui(t = t ′), a signal.

Finally, τI,τII ∈ {1,2, . . .} are the time-scale parameters of
each subsystem, meaning that the state of layer I is updated
according to Eq. (1) every τIth time step; and layer II is updated
every τIIth time step. Also,

�τI (k) =
{

1 if (k mod τI) = 0,

0 if (k mod τI) �= 0,
(2)

is the Kronecker comb, meaning that layer I directly impacts
the dynamics of layer II if the two layers simultaneously
update. We investigate three scenarios: (i) the subsystems
operate on the same time scale, i.e., τI = τII = 1; (ii) layer I
updates faster, i.e., τI = 1 and τII > 1; and (iii) layer II updates
faster τI > 1 and τII = 1.

We seek full control of the system as defined by
Kalman [28], meaning that with the proper choice of u(t),
we can steer the system from any initial state to any final state
in finite time. To characterize controllability, we aim to design
a matrix B such that the system is controllable and the number
of independent control inputs, M , is minimized. The minimum

number of inputs, Ni, serves as our measure of how difficult it
is to control the system.

To find a robust and efficient algorithm to determine Ni, we
rely on the framework of structural controllability [29]. We say
that a matrix A∗ has the same structure as A, if the zero-nonzero
elements of A and A∗ are in the same position, and only the
value of the nonzero entries can be different; in other words, in
the corresponding network the links connect the same nodes
and only the link weights can differ. A linear system of Eq. (1)
defined by matrices (AI,AII,D,B) is structurally controllable if
there exists matrices with the same structure (A∗

I ,A
∗
II,D

∗,B∗)
such that the dynamics defined by (A∗

I ,A
∗
II,D

∗,B∗) are con-
trollable according to the definition of Kalman. Note that
ultimately we are interested in controllability and not structural
controllability. Yet, structural controllability is a useful tool
because (i) if a linear system is structurally controllable, it
is controllable for almost all link weight combinations [29]
and (ii) determining structural controllability can be mapped
to a graph combinatorial problem allowing for efficient and
numerically robust algorithms.

III. MINIMUM INPUT PROBLEM

Before addressing the minimum input problem of multiplex
networks, we revisit the case of single-layer networks by
providing an alternative explanation of the minimum input
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theorem of Liu et al. [10]. This approach readily lends itself to
being extended to multiplex, multi-time-scale networks, thus
providing the basis for Sec. III B, in which we develop an
algorithm to determine Ni for two-layer multiplex networks.

A. Single-layer networks

The linear discrete-time dynamics associated to a single-
layer weighted directed network L are formulated as

x(t) = Ax(t − 1) + Bu(t − 1), (3)

where x(t), A, B, and u(t) are defined similarly as in Eq. (1)
[Fig. 2(a)]. To obtain a graph combinatorial condition for
structural controllability, we rely on the dynamic graph DT ,
which represents the time evolution of a system from t = 0 to
t = T [30–32]. Each node vi in L is split into T + 1 copies
{vi,0,vi,1, . . . ,vi,T }, each copy vi,t represents the state of node
vi at time step t . We add a directed link (vi,t → vj,t+1) for
t = 0,1, . . . ,T − 1 if they are connected by a directed link
(vi → vj ) in the original network, representing that the state of
node vj at time t + 1 depends on the state of its in neighbors at
the previous time step. To account for the controller, for each
independent input we create T nodes ui,t (i = 1,2, . . . ,M;
t = 0,1, . . . ,T − 1), each representing a control signal (i.e.,
the value of the ith input at time step t). We draw a directed
link (ui,t → vj,t+1) for t = 0,1, . . . ,T − 1 if bji �= 0, where
bji is an element of matrix B.

According to Theorem 15.1 of Ref. [30], a linear sys-
tem (A,B) is structurally controllable if and only if in
the associated dynamic graph DN node sets U = {ui,t |i =
1,2, . . . ,M; t = 0,1 . . . ,N − 1} [green nodes in Fig. 2(b)] and
VN = {vi,t=N |i = 1,2 . . . ,N} (blue nodes) are connected by
N disjoint paths (red links); i.e., there exists a set of disjoint
paths C = {P1,P2, . . . ,PN } such that U contains the set of
starting points and VT is the set of end points. A path P

of length l between nodes vi0 and vil is a sequence of l

consecutive links [(vi0 → vi1 ),(vi1 → vi2 ), . . . ,(vil−1 → vil )]
such that each node is traversed only once. Node vi0 is the

starting point and vil is the end point of P . Two paths P1 and
P2 are disjoint if no node is traversed by both P1 and P2; a set
of paths is disjoint if all paths in the set are pairwise disjoint.

A possible interpretation of this result is that if a Pi path
has starting point uj,t0 and end point vk,t1 , we say that the
signal uj (t0) is assigned to set xk(t1), the state of node vk at
time t1, through path Pi . Therefore, we refer to path Pi as a
control path. The clear meaning of the dynamic graph and the
control paths makes this condition useful to formulate proofs
and to interpret results. However, it is rarely implemented
to test controllability of large networks, because the size of
the dynamical graph grows as N2, rendering such algorithms
too slow. In the following, we provide a condition that only
requires the dynamic graph D1 as input; therefore, it is more
suitable for practical purposes.

It was shown in Refs. [10,30,33] that a linear system
(A,B) is structurally controllable if and only if (i) in D1

we can connect nodes U ∪ V0 = {ui,t=0|i = 1,2, . . . ,M} ∪
{vi,t=0|i = 1,2 . . . ,N} [green nodes in Fig. 2(c)] and nodes
V1 = {vi,t=1|i = 1,2 . . . ,N} (blue nodes) via N disjoint paths
(red links) and (ii) all nodes are accessible from the inputs.
This result can be understood as a self-consistent version
of the previous condition involving DN : Instead of keeping
track of the entire control paths as we previously did, we
concentrate on a single time step. Consider the dynamic graph
D1 representing the time evolution of the system from t = 0
to t = 1, and assume that the system is controllable. By
definition we can set the state of each node independently
at t = 0; therefore, we can treat them as control signals
to control the system at a later time step. Now let us aim
to control the system at t = 1; according to our previous
condition, it is necessary that N disjoint paths exist be-
tween nodes U ∪ V0 = {ui,t=0|i = 1,2, . . . ,M} ∪ {vi,t=0|i =
1,2 . . . ,N} and nodes V1 = {vi,t=1|i = 1,2 . . . ,N}. This is
exactly requirement (i), together with the accessibility require-
ment (ii) it is a sufficient and necessary condition. Note that
D1 is a bipartite network (each link is connected to exactly one

(a) (c)(b)

FIG. 2. Structural controllability of single-layer networks. (a) A single-layer network; we apply inputs to nodes vA and vB . (b) The dynamic
graph DN representing the time evolution of the dynamics from t = 0 to t = N . The system is controllable because we can connect the set of
nodes representing control signals (green) to the set of nodes at t = N (blue) via disjoint paths (red). (c) The dynamic graph D1 representing
the time evolution of the dynamics from t = 0 to t = 1. The system is controllable, because we can connect the control signals and nodes at
t = 0 (green) to the set of nodes at t = 1 (blue) via disjoint paths (red), and all nodes are accessible from control signals.
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node in U ∪ V0 and one node in V1) and each disjoint path in
D1 is a single link.

The minimum input problem aims to identify the minimum
number of inputs that guarantee controllability for a given
network; in other words, the goal is to design a B ∈ RN×M for
a given A such that M is minimized. For this we consider
the dynamic graph D1 without nodes representing control
signals. We then find a maximum cardinality matching, where
a matching is a set of links that do not share an end point.
The matching is a set of disjoint paths connecting node sets
V0 and V1. Controllability requires N disjoint paths between
U ∪ V0 and V1; therefore, Ni = N − Nmatch, where Nmatch is
the size of the maximum matching (if Nmatch = N , Ni = 1).
Allowing the inputs to be connected to multiple nodes, we can
guarantee that all nodes are accessible from the inputs. Thus,
we recovered the minimum input theorem of Liu et al. [10].

In summary, by relying on a self-consistent condition for
structural controllability we re-derived the known result that
identifying Ni is equivalent to finding a maximum matching
in D1. In the next section we show that this self-consistent
approach lends itself to being extended to the multiplex, multi-
time-scale model defined by Eq. (1), allowing us to derive an
analogous method to identify Ni.

B. Multiplex networks

To find the minimum number of inputs Ni for multiplex,
multi-time-scale networks, we first extend the definition of the
dynamic graph. We define the dynamic graph DτII such that
it captures the time evolution of a multiplex system defined
by (AI,AII,D,B) and Eq. (1) from t = 0 to t = τII. For sake
of brevity, we assume that τI = 1 and τII � 1, the case of
τI > 1 and τII = 1 is treated similarly [Fig. 1(d)]. Each node
vI

i in layer I is split into τII + 1 copies {vI
i,0,v

I
i,1, . . . ,v

I
i,τII

};
each node vII

i in layer II is split into two copies {vII
i,0,v

II
i,τII

},
because layer II does not update during the intermediate time
steps. We draw a link from vI

i,t to vI
j,t+1 (t = 0,1, . . . ,τII − 1)

if they are connected in layer I by a directed link (vI
i → vI

j ),
and similarly we connect vII

i,0 to vII
j,τII

if they are connected in
layer II. In addition, we draw a link between each pair vI

i,0 and
vII

i,τII
to account for the interconnectedness.

As a natural extension of the self-consistent approach
introduced in Sec. III A, assume that the system is controllable.
If the system is controllable, we can set the state of each
node independently at t = 0. To control the system at t = τII,
all nodes at t = τII in DτII (blue nodes in Fig. 1) have to be
connected to a node at t = 0 or to a control signal (green nodes)
via a disjoint path (red links). In other words, a linear two-layer
system (AI,AII,D,B) is structurally controllable only if there
exists 2N disjoint paths in the dynamic graph connecting
node set U ∪ V0 = {ui,t |i = 1,2, . . . ,M; t = 0,1, . . . ,τII −
1} ∪ {vI

i,0|i = 1,2, . . . ,N} ∪ {vII
i,0|i = 1,2, . . . ,N} and node

set VτII = {vI
i,τII

|i = 1,2, . . . ,N} ∪ {vII
i,τII

|i = 1,2, . . . ,N}.
To test whether the system is controllable by M independent

inputs, we need to find a B ∈ RN×M such that the system is
controllable. We do not have to check all possibilities, because
if such B exists, then the system is also controllable for B′ ∈
RN×M , where B′ has no zero elements; therefore, we only
check the case when each input is connected to each node in

layer I. Given matrices (AI,AII,D,B′), we now have to count
the number of disjoint paths connecting U ∪ V0 and VτII in the
corresponding dynamic graph DII. We find these paths using
maximum flow: We set the capacity of each link and each node
to 1, we then find the maximum flow connecting source node
set U ∪ V0 to target node set VτII using any maximum flow
algorithm of choice. If the system is structurally controllable,
the maximum flow equals to 2N ; if it is less than 2N , additional
inputs are needed.

We can now identify the minimum number of inputs Ni

by systematically scanning possible values of M . A simple
approach is to first set M = 1 and test if the system is
controllable. If not, increase M by one. Repeat this until the
smallest M yielding full control is found. Significant increase
in speed is possible if we find the minimum value of M

using bisection. We initially know that N
upper
i = N � Ni �

N lower
i = 1. We set M = (Nupper

i + N lower
i )/2 and test if the

system is controllable. If yes, we set N
upper
i = M; if no, we

set N lower
i = M . We repeat this until N

upper
i = N lower

i , which
provides Ni. For implementation, we used Google OR-TOOLS

and IGRAPH PYTHON packages [34,35].
The one-to-one coupling between layer I and layer II

guarantees that full control is possible with at most N

independent inputs; therefore, we often normalize Ni by N ,
i.e., ni = Ni/N .

Note that in the above argument we rely on the test of
structural controllability based on the dynamic graph, which
was originally introduced for single-time-scale networks [30].
The sufficiency of the condition relies on the fact that the zero
is the only degenerate eigenvalue of a matrix A if the nonzero
elements of A are uncorrelated. However, this might not remain
true for the spectrum of Aτ , where τ > 1, due to correlations
arising in the nonzero elements of Aτ . If a λ �= 0 eigenvalue
has larger geometric multiplicity than the multiplicity of 0,
Ni would be larger than predicted by the dynamic graph; if a
λ �= 0 eigenvalue has larger geometric multiplicity than 1 but
smaller than the multiplicity of zero, it does not affect Ni, but
may require connecting an input to multiple nodes [12]. In the
τI > 0 and τII = 1 case, a control signal is only injected into
layer II every τI time step [Fig. 1(d)]; therefore, the spectrum of
AτI

II becomes relevant. However, we are interested in large and
sparse complex networks whose spectra are dominated by the
zero eigenvalue [12]. Therefore, it is reasonable to expect that
the spectrum of Aτ will be dominated by zero eigenvalues as
well, meaning that the minimum number of inputs is correctly
given by this graph combinatorial condition. Furthermore, the
one-to-one coupling between the layers guarantees that control
is possible by only interacting with layer I directly.

So far, we developed a method to characterize controlla-
bility of a multiplex, multi-time-scale system based on the
underlying network structure and the time scale of each of
its layers. In the next section, we rely on these tools to
systematically study how network characteristics and time
scales affect Ni.

IV. RESULTS

In this section we investigate how different time scales and
the degree distribution of each layer affect controllability. For
time scales, we consider three scenarios: (i) the subsystems
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operate on the same time scale, i.e., τI = τII = 1; (ii) layer
I updates faster, i.e., τI = 1 and τII > 1; and (iii) layer II
updates faster τI > 1 and τII = 1. To uncover the effect of
degree distribution, we consider layers with Poisson (ER) or
scale-free (SF) degree distribution, the latter meaning that the
distribution has a power-law tail.

We generate scale-free layers using the static model [36]:
We start with N unconnected nodes. Each node vi is assigned
two hidden parameters, win(i) = i−ζin and wout(i) = i−ζout ,
where i = 1,2, . . . ,N . The weights are then shuffled to
eliminate any correlations of the in and out degree of individual
nodes and between layers. We then randomly place L directed
links by choosing the start and end points of the link with
probability proportional to win(i) and wout(i), respectively. For
large N this yields the degree distribution

P SF
in/out(k) = [c(1 − ζin/out)1/ζin/out ]

ζin/out

�(k−1/ζin/out,c[1 − ζin/out])

�(k + 1)
,

(4)

where c = L/N is equal to the average degree and �(n,x)
is the upper incomplete � function. For large k, P SF

in/out(k) ∼
k−(1+1/ζin/out) = k−γin/out , where γin/out = 1 + 1/ζin/out is the ex-
ponent characterizing the tail of the distribution.

To reduce the number of parameters, we only study layers
with symmetric degree distribution, e.g., P (k) = Pin(k) =
Pout(k); however, the in and out degrees of a specific node
can be different.

A. No time-scale separation (τI = τII = 1)

In the special case when both layers operate on the same
time scale, i.e., τI = τII = 1 [Fig. 1(b)], there is no qualitative
difference between the dynamics of the layers. The reason
why the system cannot be treated as a single large network
is that we are only allowed to directly interact with layer I.
Recently, Iudice et al. developed methodology to identify Ni

if the control signals can only be connected to a subset of

nodes [16]. However, the one-to-one coupling between the
layers enables us to find Ni using a simpler approach.

Finding Ni for a single-layer network is equivalent to
finding a maximum matching of the network [10]. A matching
is a set of directed links that do not share starting or end points,
and a node is unmatched if there is no link in the matching
pointing at it. Liu et al. showed that full control of a network
is possible if each unmatched node is controlled directly by an
independent input; therefore, Ni is provided by the minimum
number of unmatched nodes. To determine Ni for a two-layer
network, we first find a maximum matching of the combined
network of layer I and layer II. If there are no unmatched nodes
in layer II, we only have to interact with layer I; therefore, we
are done. If a node vII

i is unmatched in layer II, vI
i is necessarily

matched by some node vI
j ; otherwise, the size of the matching

could be increased by adding (vI
i → vII

i ). By taking out the
link (vI

j → vI
i ) from the matching and including (vI

i → vII
i )

the size of the maximum matching does not change, and we
moved the unmatched node from layer II to layer I. We repeat
this for all unmatched nodes in layer II. (Note that it may
be necessary to connect inputs to additional nodes so that all
nodes are reached by the control signals. Due to the one-to-one
coupling between the layers, this too can be accomplished
by interacting only with layer I.) This simplified method
allows faster identification of Ni using the Hopcroft-Karp
algorithm [37] and analytically solving ni = Ni/N for random
networks based on calculating the fraction of always matched
nodes, as described in Appendix A [38–41].

First, we measure ni while fixing the average degree of
layer II (cII) and varying the average degree of layer I (cI). For
both ER-ER and SF-SF networks, we find that ni decreases
for increasing values of cI and converges to nII

i = N II
i /N ,

the normalized number of inputs needed to control layer
II in isolation [Fig. 3(a)]. The latter observation is easily
understood. ni is determined by the fraction of unmatched
nodes in the combined network of the two layers; if cI is high
enough, layer I is perfectly matched. Therefore, all unmatched
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FIG. 3. No time-scale separation. (a) Number of inputs ni in function of cI for ER-ER and SF-SF (γI = γII = 2.5) networks. The circles
represent simulations, the continuous line is the analytical solution, and the dashed line is the analytical solution of nII

i , the number of
independent inputs necessary to control layer II in isolation [10]. (b) ni for ER-ER networks with varying average degrees cI and cII. In
both layers P (k) = P (kin) = P (kout); therefore, the heat map is symmetric with respect to the diagonal. Increasing c in either layer enhances
controllability. (c) ni for SF-SF networks with cI = cII = 4.0 and varying degree exponents γI and γII. Increasing degree heterogeneity in
either layer increases ni. Each data point is the average over ten randomly generated networks with N = 10 000. The standard deviation of the
measurements remains below 0.01.
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FIG. 4. Layer I updates faster. (a) Number of inputs ni for single ER-ER and SF-SF (γI = γII = 2.5) networks with N = 10 000 and varying
time-scale parameter τII. The number of inputs ni monotonically decreases with increasing τII, and for τII � τ c

II and ni = nI
i . (b) The critical

time-scale parameter τ c
II for ER-ER and SF-SF (γI = γII = 2.5) networks with varying average degree cI and cII. The crosses represent direct

measurements of τ c
II; the squares represent the approximation obtained by applying Eq. (7) to measurements of ni(τII = 1) and nI

i ; and the
dashed line is an approximation obtained using analytically calculated expectation values of ni(τII = 1) and nI

i . (c) We measure τ c
II for SF-SF

networks with the same ni(τII = 1) and nI
i as a function of γ = γI = γII. Equation (7) predicts that τ c

II remains constant (dashed line), in line with
our observations. For (b),(c), each data point is the average over ten randomly generated networks with N = 10 000 and error bars represent
the standard deviation.

nodes are in layer II. Based on the same argument, nI
i also

serves as a lower bound for ni.
Varying both cI and cII for ER-ER and both γI and γII for SF-

SF with constant average degrees cI = cII, we find that dense
networks require fewer inputs than sparse networks [Fig. 3(b)]
and degree heterogeneity makes control increasingly difficult
[Fig. 3(c)], in line with results for single-layer networks [10].
We also observe that ni is invariant to exchanging layer I and
layer II. This is explained by the fact that the size of the
maximum matching is invariant to flipping the direction of all
links, and on the ensemble level this is the same as swapping
the two layers for networks with P (kin) = P (kout).

In summary, for no time-scale separation controllability
is equally affected by the network structure of both layers,
and ni is greater or equal to the number of inputs necessary
to control any of its layers in isolation. Similarly to single-
layer networks, networks with low average degree and high
degree heterogeneity require more independent inputs than
sparse homogeneous networks.

B. Layer I updates faster (τI = 1, τII > 1)

In the previous section we found that the network structure
of the two layers equally affect ni if τI = τII = 1. This is not
the case if the time scales are different; for example, if layer
I updates faster than layer II, we expect that we need fewer
inputs than in the same time-scale case by the virtue of having
more opportunity to interact with the faster system [Fig. 1(b)].
In this section we systematically study this effect using the
algorithm described in Sec. III B and analytical arguments.

By measuring ni for ER-ER and SF-SF networks as a
function of τII, we find that ni monotonically decreases with
increasing τII [Fig. 4(a)], confirming our expectations. For both
ER-ER and SF-SF networks ni(τII) converges to nI

i = N I
i /N ,

which is the normalized number of inputs needed to control
layer I in isolation. This can be understood by the following

argument. Suppose that τII = N , the maximum number of
time steps needed to impose control on any network with N

nodes [42]. We use the state of layer I at t = 0 to set the state
of layer II at t = N , and we have N time steps to impose
control on layer I as if it was just by itself. For a given network
we define the critical time-scale parameter τ c

II as the minimum
value of τII for which ni(τII) = nI

i . Above the critical time-scale
separation, layer I completely determines ni(τII) independent
of the structure of layer II; in other words, the multiplex nature
of the system no longer plays a role in determining ni.

Measuring τ c
II we find that for both ER-ER and SF-

SF networks τ c
II monotonically increases with increasing cI

for fixed cII and decreases with increasing cII for fixed cI

[Fig. 4(b)]. That is, τ c
II is the highest if layer I is dense and

layer II is sparse. SF-SF networks have significantly lower τ c
II

than ER-ER networks with the same average degree.
To understand the observed pattern, we provide an approxi-

mation to calculate τ c
II. We call a node vI

i externally controlled if
in the dynamic graph vI

i,τII
is connected to an external signal uj,t

via a disjoint control path [e.g., nodes vI
A and vI

B in Fig. 1(c)],
and the number of such nodes is denoted by Ne(τII). We have
previously shown that we require N I

i independent inputs at τ c
II.

For each independent input and each time step, we have one
control signal ui,t ; therefore, we need time scale parameter

τ c
II = ⌈

Ne
(
τ c

II

)
/N I

i

⌉
(5)

to insert enough signals required by the Ne(τ c
II) externally

controlled nodes, where 	·
 is the ceiling function. Equation (5)
is not yet useful as it contains τ c

II on both sides. Observing
that Ne(τII) is a monotonically increasing function of τII and
Ne(τII = 1) = Ni(τII = 1), we can write

Ni(τII = 1) � Ne
(
τ c

II

)
� N. (6)

In the special case when layer II is fully connected, τ c
II = 1 and

Ne(τ c
II = 1) = Ni(τII = 1). In the case when layer II is entirely
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disconnected, i.e., is composed of isolated nodes, Ne(τII) =
N = Ni(τII = 1). These two opposite limiting cases suggest
that it is reasonable to approximate Ne(τ c

II) by its lower bound,

τ c
II ≈ ⌈

Ni(τII = 1)/N I
i

⌉
, (7)

which entirely depends on quantities that we can easily
measure or analytically compute. We find that Eq. (7) preforms
remarkably well: Figure 4(b) compares direct measurements
of τ c

II to approximations obtained by using measurements
and analytically computed values of Ni(τII = 1) and N I

i .
The approximation based on measurements outperforms the
analytical calculations because the analytical results provide
the expectation value of the numerator and denominator for ER
and SF network ensembles, and therefore the ceiling function
is applied to the fraction of averages, instead of averaging after
applying the ceiling function. To further test Eq. (7), we fix
ni(τII = 1) and nI

i and we analytically calculate cI and cII for
SF-SF networks with varying degree exponent γ = γI = γII

using the framework developed in Appendix A. Then we
generate SF-SF networks and measure τ c

II as a function of

γ . The approximation predicts that τ c
II remains constant, in

line with our observations [Fig. 4(c)].
The good performance of Eq. (7) is partly due to the role

of the ceiling function because it is insensitive to changes in
the numerator that are small compared to N I

i . Indeed, errors
are more pronounced if Ni(τII = 1)/N I

i is close to an integer
[e.g., data point cI = 4.5 and cII = 1 in Fig. 4(b) for SF-SF] or
Ni(τII = 1) � N I

i [e.g., data points nI
i = 0.084 in Fig. 4(c)].

What we learn from this approximation is that τ c
II depends

only indirectly on the degree distribution of layer I and layer II
through the control properties of the system without time-scale
separation – Ni(τII = 1) and N I

i . In Sec. IV A, we showed that
Ni(τII = 1) � N II

i ; therefore, τ c
II is expected to be large if layer

I is easy to control (e.g., it is dense and has homogeneous
degree distribution) and layer II is hard to control (e.g., it is
sparse and has heterogeneous degree distribution).

In summary, if layer I updates faster, time-scale separation
enhances controllability up to a critical time-scale parameter
τ c

II, above which ni(τII) = nI
i and is completely determined by

layer I. The critical time-scale parameter τ c
II largely depends on

the controllability of the system without time-scale separation;

FIG. 5. Layer II updates faster. (a) Number of inputs ni for single ER-ER and SF-SF (γI = γII = 2.5) networks with N = 10 000 and
varying time-scale parameter τI. The number of inputs ni monotonically increases with increasing τI; for τI � τ c

I , ni = ni(τI = ∞). (b) τ c
I as a

function of cI. For cI � 1, τ c
I quickly reaches its upper bound; for cI > 1, the convergence is somewhat delayed. (c) ni(τI = ∞) as a function

of cI. Increasing cI facilitates control, until ni reaches its lower bound. (d) τ c
I as a function of cII with fix cI = 4.0. The peak of τ c

I corresponds
to the critical point where the giant strongly connected component in layer II emerges. (e) ni(τI = ∞) as a function of cII with fix cI = 4.0.
For cII < 1, layer II does not contain cycles; therefore, ni(τI = ∞) = 1. For large cII, layer II can be completely covered with cycles, and
ni(τI = ∞) is determined by nI

i . For (b)–(e), each data point is the average over ten randomly generated networks with N = 10 000 and error
bars represent the standard deviation.
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it is expected to be large if layer I is easy to control and layer
II is hard to control.

C. Layer II updates faster (τI > 1, τII = 1)

Finally, we investigate the case when layer II operates faster
than layer I, i.e., τI > 1 and τII = 1 [Fig. 1(d)]. Measurements
show that ni monotonically increases in function of τI for
both ER-ER and SF-SF networks, and ni remains constant if
τI � τ c

I , where τ c
I is defined for a single network [Fig. 5(a)].

To understand these results, consider the following argument:
Some nodes of layer II are internally controlled, meaning that
the state of these nodes at t = τI is set by the state of nodes
within layer II at t = 0 connected to them via disjoint control
paths [node vII

C in Fig. 1(d)], while the rest of the nodes of layer
II have to be controlled by nodes of layer I. The maximum
number of internally controlled nodes is set by the number of
disjoint paths of length τI. A directed open path traversing l

links in layer II yields a path in the dynamic graph of at most
length l; therefore, if τI > l the path can no longer be used
for control. For example, in Fig. 1(a) path (vII

B → vII
A) consists

of a single link; therefore, we can use it for control if τI = 1
[Fig. 1(b)] and it is no longer useful if τI > 1 [Fig. 1(d)].
However, a cycle can support a path in the dynamic graph
of any length, e.g., the self-loop (vII

C → vII
C) in Fig. 1. This

predicts that

ni(τI = ∞) � 1 − ncycle, (8)

where ncycle = Ncycle/N is the maximum fraction of nodes
that can be covered with cycles in layer II. Furthermore, it also
means that

τ c
I � lmax + 1, (9)

where lmax is the maximum length of a control path that does
not involve cycles, a quantity that only depends on the structure
of layer II. We provide the formal definition lmax and algorithms
to measure ncycle and lmax in Appendix B.

Both lmax and ncycle depend only on layer II; furthermore,
both strongly depend on whether layer II contains a strongly
connected component (SCC). Uncorrelated random directed
networks—both ER and SF—undergo a percolation transition
at c = 1 [43]. If c < 1, the network is composed of small tree
components, meaning the ncycle = 0 and lmax is equal to the
diameter D of the network. If the system is in the critical
point c = 1, the size of the largest component S diverges as
N → ∞, but the relative size S/N remains zero. The largest
component contains a small number of cycles; therefore, D is
only approximately equal to lmax. If c > 1, a unique giant
SCC emerges which contains cycles; therefore, ncycle > 0
and lmax is no longer directly connected to the diameter.
Rigorous mathematical results show that the diameter of the
ER model scales as D ∼ log(N ) for c �= 1, and D ∼ N1/3 for
c = 1, the latter corresponding to the percolation transition
point [44], suggesting that the critical time-scale parameter τ c

I
also depends on N . Indeed, Fig. 6 shows that τ c

I monotonically
increases with N for both ER-ER and SF-SF networks.

We now scan possible values of cI while keeping cII and N

fixed, we find that ni(cI) and τ c
I (cI) quickly converge to their

respective lower and upper bounds provided by Eqs. (8) and (9)
[Figs. 5(b) and 5(c)]. Varying cII and keeping cI fixed shows
more intricate behavior: τ c

I (cII) increases, peaks, and decreases
again [Fig. 5(d)]. This is explained by changes in the structure
of layer II: For small cII the network is composed of small
components with tree structure; increasing cII agglomerates
these components, thus increasing lmax. For large cII, a giant
SCC exists, supporting many cycles; as cII increases, more and
more nodes can be covered with cycles reducing lmax. At the
critical point c∗

II = 1 the giant SCC emerges, and the largest
component consists of Nα nodes (0 < α < 1) with only few
cycles, providing the peak of τ c

I (cII). Although c∗
II = 1 for

both ER and SF networks in the N → ∞ limit, finite size
effects delay the peak of τ c

I for SF-SF networks. Below the
transition point, τ c

I is smaller for ER-ER networks than for
SF-SF networks with the same average degree. In contrast,
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FIG. 6. Layer II updates faster: network size effects. Critical time-scale parameter for ER-ER networks and SF-SF networks with varying
network size N . (a) Layer II has no giant strongly connected component (cII = 0.5 < 1), lmax equals the diameter D of layer II, which scales
as D ∼ log N for ER networks, and the diameter of SF networks is smaller than the diameter of ER networks with the same average degree.
The fact that lmax + 1 � τ c

I suggests that τ c
I ∼ log(N ). (b) At the critical point cII = 1.0 the diameter of ER networks scales as D ∼ N1/3,

suggesting that τ c
I scales as a power law of N . (c) Above the critical point (cII = 4.0 > 1) there is no direct connection between D and τ c

I ;
nonetheless, observations suggest τ c

I ∼ log N . In contrast with the cII � 1 case, τ c
I increases more rapidly for SF-SF networks than for ER-ER

networks. Each data point is the average over 100 randomly generated networks with cI = 4.0 and error bars represent the standard deviation.

032316-9
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above the transition point SF-SF networks have larger τ c
I . A

likely explanation is that the cycle cover of SF networks is
smaller than the cycle cover of ER networks with the same
average degree; thus, more nodes can potentially participate in
the longest control path that does not involve cycles.

The number of inputs above the critical time-scale param-
eter ni(τI = ∞) is also affected by the cycle cover of layer II
[Fig. 5(e)]: For cII < 1, layer II does not contain cycles yielding
ni(τI = ∞) = 1; for large cII, layer II can be completely
covered with cycles, and ni(τI = ∞) is determined by nI

i , the
number of inputs needed to control layer I in isolation.

In summary, if layer II updates faster, time-scale separation
reduces controllability up to a critical time-scale parameter
τ c

I . For the model networks, the value of τ c
I depends on

whether layer II has a giant SCC; τ c
I has the highest value

at the percolation threshold of layer II. If layer II does not
contain a giant SCC, degree heterogeneity decreases τ c

I ; above
the percolation threshold homogeneous networks have lower
τ c

I . For all time-scale parameters, it remains true that ER-ER
networks require less independent inputs than SF-SF networks
with the same average degree.

V. CONCLUSIONS

Here we explored controllability of interconnected complex
systems with a model that incorporates common properties of
these systems: (i) It consists of two layers, each described by a
complex network; (ii) the operation of each layer is character-
ized by a different, but often comparable time scale; and (iii)
the external controller interacts with only one layer directly.
We focused on two-layer multiplex networks, meaning that
we assume one-to-one coupling between the nodes of the two
layers. Our motivation for this choice was to ensure analytical
tractability and to isolate the specific role of time scales
from the effect of more complex multilayer network structure.
Results obtained for more general multilayer networks will
ultimately be shaped by a variety of features such as complex
interconnectivity structure, correlations in network structure,
and details of dynamics. However, even by studying multiplex
networks, we uncovered nontrivial phenomena, attesting that
without understanding each individual effect, it is impossible
to fully understand a system as a whole.

Using structural controllability we were able to solve the
model, thereby directly linking controllability to a graph
combinatorial problem. We investigated the effect of network
structure and time scales by measuring the minimum number
of independent inputs needed for control, Ni. Overall, we found
that dense networks with homogeneous degree distribution
require less inputs than sparse heterogeneous networks, in
line with previous results for single-layer networks [10].
We showed that if we control the faster layer directly, Ni

decreases with increasing time-scale difference, but only up
to a critical value. Above the critical time-scale difference,
Ni is completely determined by the faster layer and we do
not have to take into account the multiplex structure of the
system. This critical time-scale separation is expected to be
large if the faster layer would be easy to control and the slower
layer would be hard to control in isolation. If we interact with
the slower layer, control is increasingly difficult for increasing
time-scale difference, again up to a critical value, above which

Ni still depends on the structure of both layers. In this case the
critical time-scale difference largely depends on the longest
control path that does not involve cycles in the faster layer.

Although our model offers only a stylized description of
real systems, it is a tractable first step towards understanding
the role of time scales in control of interconnected networks.
By identifying the network characteristics that affect important
measures of controllability, such as minimum number of inputs
needed for control and critical time-scale difference, our results
serve as a starting point for future work that aims to relax some
of the model’s assumptions. Some of these extensions are
relatively straightforward using the tool set developed here,
for example, the effect of higher-order network structures
can be studied by adding correlations to the underlying
networks. Other extensions are more challenging, e.g., if the
interconnection between the layers is incomplete or the layers
contain different number of nodes, the minimum input problem
is computationally more difficult; therefore, investigating such
systems would require development of efficient approximation
schemes. Structural control theory does not take the link
weights into account; therefore, answering questions that
depend on the specific strength of the connections require the
development of different tools. For example, for continuous-
time systems the time scales are encoded in the strength of the
interactions, or the minimum control energy also depends on
value of the link weights.

ACKNOWLEDGMENTS

We thank Yang-Yu Liu, Philipp Hövel, and Zsófia Pénzváltó
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APPENDIX A: ANALYTICAL SOLUTION FOR τI = τII = 1

In this section we derive an analytical solution of ni =
Ni/N in case of τI = τII = 1 for two-layer random networks
with predefined degree distribution as defined in Sec. IV. This
network model is treelike in the N → ∞ limit; therefore, it
lends itself to the generating function formalism. The approach
described here is based on calculating the fraction of nodes
that are matched in all possible maximum matchings [39].
This solution is substantially simpler than the one described in
Ref. [10]; however, it applies only to bipartite networks (or to
bipartite representations of directed networks) and cannot be
generalized to unipartite networks.

We aim to calculate the expected size of the maximum
matching of the following undirected bipartite network B.
Layer I LI and layer II LII are generated independently using
either the ER model or the SF model; VI and EI are the node
and link sets of LI and VII and EII are the node and link sets of
LII, respectively. Each node in vI

i ∈ VI is split into two copies
vI

i,0 ∈ V I
0 and vI

i,1 ∈ V I
1 ; we draw a link (vI

i,0 − vI
j,1) if there

exists a link (vI
i → vI

j ) in LI. We treat LII similarly. We then
add links (vI

i,0 − vII
i,1) for all i. That is, all links in B connect

exactly one node in V I
0 ∪ V II

0 to one node in V I
1 ∪ V II

1 . Nodes
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in V I
0 ∪ V I

1 belong to layer I, and nodes in V II
0 ∪ V II

1 belong
to layer II. The network B is the undirected version of the
dynamical graph D1 without control signals.

In general, multiple possible maximum matchings may
exist in a network. We first calculate the fraction of nodes
that are matched in all possible maximum matchings. It was
shown in Ref. [39] that in any network G a node v is always
matched if and only if at least one of its neighbors is not
always matched in G \ v, where G \ v is the network obtained
by removing node v from G. We translate this rule to a set
of self-consistent equations to calculate the expected fraction
of always matched nodes in our random network model in the
N → ∞ limit. We provide comments on the issues of applying
the rule proven for finite networks to infinite ones at the end
of this section.

To proceed we define a few probabilities. We randomly
select a link e connecting two nodes vI

i,0 ∈ V I
0 and vI

j,1 ∈ V I
1 .

Let θ I
0 be the probability that vI

i,0 is always matched in B \ e

and θ I
1 be the probability that vI

j,1 is always matched in B \ e.
Similarly, we randomly select a link e connecting a node vI

i,0 ∈
V I

0 with a node vII
i,1 ∈ V II

1 . Let θ
I,II
0 be the probability that node

vI
i,0 is always matched in B \ e and θ

I,II
1 be the probability that

node vII
i,1 is always matched in B \ e. The probabilities θ II

0 and
θ II

1 are defined similarly. According to the rule described above
these quantities can be determined by the set of equations

θ I
0 = 1 − H I(θ I

1

)
θ

I,II
1 ,

θ I
1 = 1 − H I

(
θ I

0

)
,

θ
I,II
0 = 1 − GI

(
θ I

1

)
,

θ
I,II
1 = 1 − GII

(
θ II

0

)
,

θ II
0 = 1 − H II

(
θ II

1

)
,

θ II
1 = 1 − H II

(
θ II

0

)
θ

I,II
0 , (A1)

where GI/II(x) = ∑∞
k=0 P I/II(k)xk are the generating

functions of the degree distributions and H I/II(x) =∑∞
k=1 k/〈k〉P I/II(k)xk−1 are the generating functions of the

excess degree distributions.
If we remove a node v which is not always matched, the

size of the maximum matching does not decrease. However,
if v is matched in all maximum matchings, the number of
matched nodes will decrease by two. Therefore, to count the
size of the maximum matching, we first count the number of
nodes that are always matched. By doing so, we have double
counted the case when an always matched node is matched by
another always matched one. This case occurs for each link e

that connects two nodes that are not always matched in G \ e.
Combining these two contributions, the expected number of
links in the matching is

Nmatch = N
[
1 − GI(θ I

1

)
θ

I,II
1

] + N
[
1 − GI(θ II

0

)]
+N

[
1 − GII

(
θ I

1

)] + N
[
1 − GII

(
θ II

0

)
θ

I,II
0

]
−cIN

(
1 − θ I

0

)(
1 − θ I

1

) − N
(
1 − θ

I,II
0

)(
1 − θ

I,II
1

)
−cIIN

(
1 − θ II

0

)(
1 − θ II

1

)
, (A2)

where the first four terms count the number of nodes that are
always matched in V I

0 , V I
1 , V II

0 , and V II
1 , respectively, and the

last three terms correct the double counting. The expected
number of independent inputs needed is determined by the
number of unmatched nodes in V I

1 and V II
1 :

Ni = 2N − Nmatch. (A3)

Due to the links between layer I and layer II, the size of
the maximum matching is at least N , meaning that Ni � N .
Therefore, we normalize Ni by N , yielding

ni = GI
(
θ I

1

)
θ

I,II
1 + GI

(
θ II

0

) + GII
(
θ I

1

) + GII
(
θ II

0

)
θ

I,II
0 − 2

+cI
(
1 − θ I

0

)(
1 − θ I

1

) + (
1 − θ

I,II
0

)(
1 − θ

I,II
1

)
+cII

(
1 − θ II

0

)(
1 − θ II

1

)
. (A4)

Comments on matchings in the configuration model. The
method we described to calculate the expected size of the
maximum matching does not work for unipartite ER or
SF networks generally. The reason for this is that above a
critical average degree c∗ a densely connected subgraph forms,
which is referred to as the core of the network (sometimes
leaf removal core or computational core) [45–47]. To derive
Eq. (A1), we assume that the neighbors of a randomly selected
node v are independent of each other in B \ v and removing
a single node does not influence macroscopic properties, e.g.,
θ . The effect of the core is that these assumptions no longer
hold and removing just a few nodes may drastically change
the number of always matched nodes. A possible way of
circumventing this problem is to introduce a new category of
nodes: In addition to keeping track of nodes that are sometimes
matched and always matched, we separately account for nodes
that are almost always matched [38].

The reason why the calculation works for bipartite networks
is that a core in the bipartite network will have two sides: All
nodes on one side will be always matched and all nodes on
other will be sometimes matched [39–41]. If the expected size
of the core on the two sides is different, finite removal of
nodes will not change macroscopic properties. If the expected
sizes of the two sides of the core are the same, removal of
finite nodes may change which side is always matched and
which side is sometimes matched [39]. However, this does not
change expected fraction of matched nodes and therefore does
not interfere with the calculations.

APPENDIX B: ALGORITHMS

1. Cycle cover (Ncycle)

To find the maximum cycle cover of a directed network L,
we assign weight 0 to each link in L, and we add a self-loop
with weight 1 to each node that does not already have a self-
loop. Then we find the minimum weight maximum directed
matching in L augmented with self-loops by converting the
problem to a minimum cost maximum flow problem. The
maximum matching is guaranteed to be perfect, because each
node has a self-loop. The minimum weight perfect matching
in the directed network corresponds to a perfect cycle cover
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(a) (b)

FIG. 7. lmax, example 1. (a) A directed network with tree structure, therefore not containing cycles. The diameter D = 2 is the length of the
longest path. (b) We count the maximum number of disjoint control paths Npath(l) which connect nodes at time step 0 with nodes at time step
l. We find that l′ = 3 is the smallest value of l such that Npath(l) = Ncycle = 0; therefore, lmax = 2. There are no cycles; therefore, lmax = D.

where the number of self-loops with weight 1 is minimized.
Therefore, the maximum cycle cover in L without extra self-
loops is

Ncycle = N − W, (B1)

where W is the sum of the weights of the links in the minimum
weight perfect matching.

2. Longest control path not involving cycles (lmax)

In this section we provide the algorithm to measure the
longest control path not involving cycles lmax of layer II of
a two-layer network for the case τI � 1 and τII = 1. The
algorithm itself serves as the precise definition of lmax.

Given a two-layer directed network M, let Ncycle be the
maximum number of nodes that can be covered by node
disjoint cycles in layer II. To measure lmax, first we construct
the dynamical graph DII

l representing the time evolution of
the layer II between time t = 0 and t = l as if it would be

isolated as defined in Sec. III A. We search for disjoint control
paths connecting nodes at time step t = 0 with nodes at time
step t = l; e.g., each control path connects a node vII

i,0 with
vII

j,l . The maximum number of such paths Npath(l) provides
the maximum number of internally controlled nodes if τI = l.
To determine Npath(l) we convert the problem to a maximum
flow problem: We set the capacity of each link and each
node in DII

l to 1. We then find the maximum flow connecting
source node set V II

0 = {vII
i,0|i = 1,2, . . . ,N} to target node set

V II
l = {vII

i,l|i = 1,2, . . . ,N} using a maximum flow algorithm
of choice. The maximum flow provides Npath(l). Finally, lmax

is defined as one less than the smallest value of l such that

Npath(l) = Ncycle. (B2)

Figures 7 and 8 provide two examples to illustrate the
calculation of lmax.

(a) (b)

FIG. 8. lmax, example 2. (a) A directed network containing a cycle. The size of the maximum cycle cover is Ncycle = 1. (b) We count the
maximum number of disjoint control paths Npath(l) which connect nodes at time step 0 with nodes at time step l. We find that l′ = 2 is the
smallest value of l such that Npath(l) = Ncycle = 1; therefore, lmax = 1. Npath(l) remains nonzero for l > lmax, showing that cycles can support
control paths of any length.
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[31] René Pfitzner, Ingo Scholtes, Antonios Garas, Claudio J.
Tessone, and Frank Schweitzer, Betweenness Preference: Quan-
tifying Correlations in the Topological Dynamics of Temporal
Networks, Phys. Rev. Lett. 110, 198701 (2013).
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Slotine, and Albert-László Barabási, Emergence of bimodality
in controlling complex networks, Nat. Commun. 4, 2002
(2013).

032316-13

http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1016/j.physrep.2014.07.001
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1038/nature08932
http://dx.doi.org/10.1073/pnas.1110586109
http://dx.doi.org/10.1073/pnas.1110586109
http://dx.doi.org/10.1073/pnas.1110586109
http://dx.doi.org/10.1073/pnas.1110586109
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1103/PhysRevLett.110.028701
http://dx.doi.org/10.1016/S0378-4371(02)00772-0
http://dx.doi.org/10.1016/S0378-4371(02)00772-0
http://dx.doi.org/10.1016/S0378-4371(02)00772-0
http://dx.doi.org/10.1016/S0378-4371(02)00772-0
http://dx.doi.org/10.1103/PhysRevE.75.046103
http://dx.doi.org/10.1103/PhysRevE.75.046103
http://dx.doi.org/10.1103/PhysRevE.75.046103
http://dx.doi.org/10.1103/PhysRevE.75.046103
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1103/PhysRevE.85.026115
http://dx.doi.org/10.1103/PhysRevE.85.026115
http://dx.doi.org/10.1103/PhysRevE.85.026115
http://dx.doi.org/10.1103/PhysRevE.85.026115
http://dx.doi.org/10.1038/ncomms3447
http://dx.doi.org/10.1038/ncomms3447
http://dx.doi.org/10.1038/ncomms3447
http://dx.doi.org/10.1038/ncomms3447
http://dx.doi.org/10.1038/ncomms2939
http://dx.doi.org/10.1038/ncomms2939
http://dx.doi.org/10.1038/ncomms2939
http://dx.doi.org/10.1038/ncomms2939
http://dx.doi.org/10.1038/srep01067
http://dx.doi.org/10.1038/srep01067
http://dx.doi.org/10.1038/srep01067
http://dx.doi.org/10.1038/srep01067
http://dx.doi.org/10.1038/ncomms6415
http://dx.doi.org/10.1038/ncomms6415
http://dx.doi.org/10.1038/ncomms6415
http://dx.doi.org/10.1038/ncomms6415
http://dx.doi.org/10.1038/ncomms9349
http://dx.doi.org/10.1038/ncomms9349
http://dx.doi.org/10.1038/ncomms9349
http://dx.doi.org/10.1038/ncomms9349
http://dx.doi.org/10.1109/TAC.2014.2328757
http://dx.doi.org/10.1109/TAC.2014.2328757
http://dx.doi.org/10.1109/TAC.2014.2328757
http://dx.doi.org/10.1109/TAC.2014.2328757
http://dx.doi.org/10.1038/srep20706
http://dx.doi.org/10.1038/srep20706
http://dx.doi.org/10.1038/srep20706
http://dx.doi.org/10.1038/srep20706
http://dx.doi.org/10.1088/1367-2630/16/10/103036
http://dx.doi.org/10.1088/1367-2630/16/10/103036
http://dx.doi.org/10.1088/1367-2630/16/10/103036
http://dx.doi.org/10.1088/1367-2630/16/10/103036
http://dx.doi.org/10.1103/PhysRevE.93.012309
http://dx.doi.org/10.1103/PhysRevE.93.012309
http://dx.doi.org/10.1103/PhysRevE.93.012309
http://dx.doi.org/10.1103/PhysRevE.93.012309
http://dx.doi.org/10.2307/259351
http://dx.doi.org/10.2307/259351
http://dx.doi.org/10.2307/259351
http://dx.doi.org/10.2307/259351
http://blog.bitly.com/post/9887686919/you-just-shared-a-link-how-long-will-people-pay
http://dx.doi.org/10.1155/2016/1429164
http://dx.doi.org/10.1155/2016/1429164
http://dx.doi.org/10.1155/2016/1429164
http://dx.doi.org/10.1155/2016/1429164
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/10.1103/PhysRevLett.110.198701
http://dx.doi.org/10.1103/PhysRevLett.110.198701
http://dx.doi.org/10.1103/PhysRevLett.110.198701
http://dx.doi.org/10.1103/PhysRevLett.110.198701
http://dx.doi.org/10.1088/1367-2630/16/12/123055
http://dx.doi.org/10.1088/1367-2630/16/12/123055
http://dx.doi.org/10.1088/1367-2630/16/12/123055
http://dx.doi.org/10.1088/1367-2630/16/12/123055
http://dx.doi.org/10.1016/j.automatica.2013.07.021
http://dx.doi.org/10.1016/j.automatica.2013.07.021
http://dx.doi.org/10.1016/j.automatica.2013.07.021
http://dx.doi.org/10.1016/j.automatica.2013.07.021
http://igraph.org
https://developers.google.com/optimization/
http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://dx.doi.org/10.1103/PhysRevLett.87.278701
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1088/1742-5468/2006/05/P05003
http://dx.doi.org/10.1088/1742-5468/2006/05/P05003
http://dx.doi.org/10.1088/1742-5468/2006/05/P05003
http://dx.doi.org/10.1038/ncomms3002
http://dx.doi.org/10.1038/ncomms3002
http://dx.doi.org/10.1038/ncomms3002
http://dx.doi.org/10.1038/ncomms3002
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