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Topology of Evolving Networks: Local Events and Universality
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Networks grow and evolve by local events, such as the addition of new nodes and links, or rewiring
of links from one node to another. We show that depending on the frequency of these processes two
topologically different networks can emerge, the connectivity distribution following either a generalized
power law or an exponential. We propose a continuum theory that predicts these two regimes as well as
the scaling function and the exponents, in good agreement with numerical results. Finally, we use the
obtained predictions to fit the connectivity distribution of the network describing the professional links
between movie actors.

PACS numbers: 84.35.+i, 64.60.Fr, 87.23.Ge
The complexity of numerous social, biological, or com-
munication systems is rooted in the rather interwoven web
defined by the system’s components and their interactions.
For example, cell functioning is guaranteed by a com-
plex metabolic network, whose nodes are substrates and
enzymes, and edges represent chemical interactions [1].
Similarly, the society is characterized by a huge social net-
work whose nodes are individuals or organizations, con-
nected by social interactions [2], but equally complex
networks appear in the business world, where nodes are
companies and edges represent diverse trade relationships,
or describe the world-wide web (www), whose nodes are
html documents connected by links pointing from one page
to another [3–5].

The study of random networks has been dominated by
the model of Erdős and Rényi (ER) [6] that views the net-
work as a set of nodes which are connected pairwise with
equal probability. Recently Watts and Strogatz (WS) [7]
found that local clustering is an important characteristic of
networks, offering the first indication that real networks
could be more complex than predicted by the ER model.
A common feature of the ER and WS models is that the
probability P�k� that a node in the network is connected
to k other nodes is bounded, decaying exponentially for
large k. In contrast, measurements on the www connec-
tivity [3–5], actor networks [7,8], citation network of sci-
entists [9], and recent results on the Internet topology [10]
found that, independently of the nature of the system and
the identity of its constituents, P�k� decays as a power law,
following P�k� � k2g . These results offered the first evi-
dence that some large networks can self-organize into a
scale-free state, a feature unexpected by previous network
models [6,7]. The origin of this scale-free behavior has
been traced back to two mechanisms that are present in
many systems, and have a strong impact on the final topol-
ogy [8]. First, networks develop by the addition of new
nodes that are connected to those already present in the
system. Second, there is a higher probability that a new
node is linked to a node that already has a large number of
connections. These two ingredients led to the formulation
of the scale-free model that generates a network for which
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P�k� follows a power law with g � 3. While this model
correctly predicts the emergence of power-law scaling, the
agreement between the measured and predicted exponents
is less than satisfactory: For real systems, g is scattered
between 2.1 and 3 [8], raising important questions about
the universality of network formation.

In this paper we introduce an extended model of network
evolution that gives a more realistic description of the local
processes, incorporating the addition of new nodes, new
links, and the rewiring of links. We show that, depending
on the relative frequency of these local processes, networks
can develop two fundamentally different topologies. In the
first regime P�k� has a power-law tail, but the exponent g

depends continuously on the frequency of the local events.
In the second regime P�k� approaches an exponential. We
derive a phase diagram that predicts the transition between
these two topologically distinct regimes, and we use the
obtained prediction to fit the connectivity distribution of
the actor network.

Extended model.—We start with m0 isolated nodes, and
at each time step we perform one of the following three
operations (see Fig. 1a).

(i) With probability p we add m�m # m0� new links:
For this we randomly select a node as the starting point of
the new link, describing, for example, that a web developer
decides to add a new hyperlink to a page. The other end
of the link is selected with probability

P�ki� �
ki 1 1P
j�kj 1 1�

, (1)

incorporating the fact that new links preferentially point
to popular nodes, with a high number of connections [8].
This process is repeated m times.

(ii) With probability q we rewire m links: For this we
randomly select a node i and a link lij connected to it.
Next we remove this link and replace it with a new link
lij0 that connects i with node j0 chosen with probability
P�k0

j� given by (1). This process is repeated m times.
(iii) With probability 1 2 p 2 q we add a new node:

The new node has m new links that with probability P�ki�
are connected to nodes i already present in the system.
© 2000 The American Physical Society
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FIG. 1. (a) Illustration of the possible elementary processes
in the extended model for m0 � 3 and m � 2. At time t � 2
there are five nodes in the system connected by four links (upper
panel). In the next time step, one of three possible events can
take place: (i) Add m � 2 links with probability p. One end of
the new link is selected randomly, and the other is selected using
preferential attachment [Eq. (1)]. The new links are drawn with
dashed lines. (ii) Rewire m � 2 links with probability 1 2 q.
The AD link is disconnected from its A end and connected pref-
erentially to the highly connected node E. (iii) Add a new node
(F ) and connect it with m � 2 links to the nodes in the sys-
tem with probability 1 2 p 2 q, using preferential attachment.
(b) Phase diagram for the extended model. The scale-free (SF)
regime for m � 1 is shaded; the remaining p 1 q , 1 domain
corresponds to the exponential (E) regime. The boundary be-
tween E and SF is shown as a dotted line when m ! 0, or as a
dashed line when m ! `.

Since our goal is to investigate the generic mechanisms
of network evolution, we use bidirectional links. How-
ever, our results can be easily generalized to directed net-
works as well. In the model, the probabilities p and q can
be varied in the interval 0 # p , 1 and 0 # q , 1 2 p.
Note that we choose the probability P�ki� to be propor-
tional to ki 1 1, such that there is a nonzero probability
that isolated nodes �ki � 0� acquire new links. Finally, in
the p � q � 0 limit the model reduces to the scale-free
model investigated in Ref. [8].

Continuum theory.— In the model the probability that
a node i increases its connectivity ki depends only on ki

and quantities characterizing the whole network (the pa-
rameters p, q, m and the number of nodes and links). We
assume that ki changes continuously, and the probability
P�ki� can be interpreted as the rate at which ki changes
[11]. Consequently, the processes (i)–(iii) all contribute
to ki , each being incorporated in the continuum theory as
follows.
(i) Addition of m new links with probability p:µ
≠ki

≠t

∂
�i�

� pA
1
N

1 pA
ki 1 1P
j�kj 1 1�

, (2)

where N is the size of the system. The first term on the
right-hand side corresponds to the random selection of one
end of the new link, while the second term reflects the
preferential attachment (1) used to select the other end of
the link. Since the total change in connectivity after a step
is Dk � 2m, we have A � m.

(ii) Rewiring of m links with probability q:µ
≠ki

≠t

∂
�ii�

� 2qB
1
N

1 qB
ki 1 1P
j�kj 1 1�

. (3)

The first term incorporates the decreasing connectivity of
the node from which the link was removed, and the second
term represents the increasing connectivity of the node that
the link is reconnected to. The total connectivity does not
change during the rewiring process, but B can be calculated
by separating the two processes, obtaining B � m.

(iii) Addition of a new node with probability 1 2 p 2 q:µ
≠ki

≠t

∂
�iii�

� �1 2 p 2 q�C
ki 1 1P
j�kj 1 1�

. (4)

The number of links connecting the new node to the nodes
in the system is m, thus we have C � m.

By adding the contribution of the three processes, we
obtain

≠ki

≠t
� �p 2 q�m

1
N

1 m
ki 1 1P
j�kj 1 1�

. (5)

In (5) the system size N and the total number of linksP
j kj vary with time as N�t� � m0 1 �1 2 p 2 q�t andP
j kj � �1 2 q�2mt 2 m, indicating that for large t we

can neglect the constants m0 and m compared to the terms
linearly increasing with time. Using as an initial condition
the connectivity of a node added at time ti , ki�ti� � m, the
solution of (5) for ki�t� has the form

ki�t� � �A�p, q, m� 1 m 1 1�
µ

t
ti

∂1�B�p,q,m�

2 A�p, q, m� 2 1 , (6)

where

A�p, q, m� � �p 2 q�
µ

2m�1 2 q�
1 2 p 2 q

1 1

∂
,

B�p, q, m� �
2m�1 2 q� 1 1 2 p 2 q

m
.

(7)

The probability that a node has a connectivity ki�t� smaller
than k, P�ki�t� , k�, can be written as P�ki�t� , k� �
P�ti . C�p, q, m�t�, where

C�p, q, m� �

µ
m 1 A�p, q, m� 1 1
k 1 A�p, q, m� 1 1

∂B� p,q,m�
. (8)

Since ti must satisfy the condition 0 # ti # t, we can
distinguish three cases.
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(I) If C�p, q, m� . 1, then P�ki�t� , k� � 0. Thus the
condition that P�k� is nonzero is that k . m.

(II) If C�p, q, m� is not real, then P�ki�t� , k� is
not well-defined. Thus to be able to calculate P�k� we
must have m1A� p,q,m�11

k1A�p,q,m�11 . 0 for all k . m, satisfied if
A�p, q, m� 1 m 1 1 . 0.

(III) Finally, if 0 , C�p, q, m� , 1, the connectivity
distribution P�k� can be determined analytically. Defining
the unit of time in the model as one growth/rewire/new
link attempt, the probability density of ti is Pi�ti� �
1��m0 1 t�, thus

P�ki�t� , k� � 1 2 C�p, q, m�
t

m0 1 t
(9)

from which, using P�k� �
≠P�ki �t�,k�

≠k , we obtain

P�k� �
t

m0 1 t
D�p, q, m�

3 �k 1 A�p, q, m� 1 1�212B�p,q,m�, (10)

where D�p, q, m� � �m 1 A�p, q, m� 1 1�B� p,q,m� 3

B�p, q, m�.
Thus the connectivity distribution, the main result

provided by the continuum theory, has a generalized
power-law form

P�k� ~ �k 1 k�p, q, m��2g�p,q,m�, (11)

where k�p, q, m� � A�p, q, m� 1 1 and g�p, q, m� �
B�p, q, m� 1 1.

Phase diagram and scaling.—Equations (10) and (11)
are valid only when A�p, q, m� 1 m 1 1 . 0 [see (I) and
(II)], which, for fixed p and m, translates into q , qmax �
min�1 2 p, �1 2 p 1 m���1 1 2m��. The �p, q� phase
diagram, shown in Fig. 1b, indicates the existence of two
regions in the parameter space: For q , qmax, P�k� is
given by (11), thus the connectivity distribution is scale-
free. For q . qmax, however, Eq. (11) is not valid; the
continuum theory fails to predict the behavior of the sys-
tem. We demonstrate that, in this regime, P�k� crosses
over to an exponential. The boundary between the scale-
free and exponential regimes depends on the parameter m,
being a line with slope 2m��1 1 2m� (Fig. 1b).

Scale-free regime.—While a power-law tail is present
in any point of this regime, the scaling is different from
that predicted by the simpler scale-free model [8]. First,
according to (10), for small k the probability saturates
at P���k�p, q, m����. This feature reproduces the results ob-
tained for real networks: P�k� obtained for the actor net-
work or the citation network of scientists saturates at small
k [8]. Second, the exponent g�p, q, m�, characterizing the
tail of P�k� for k ¿ k�p, q�, changes continuously with
p, q, and m, predicting a range of exponents between 2
and `. This allows us to account for the wide variations
seen in real networks, for which g varies from 2 to 3. To
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demonstrate the predictive power of the continuum theory,
we have studied the extended discrete model numerically,
as defined in (i)–(iii). As Fig. 2a shows, Eq. (10) offers
an excellent, parameter-free fit to the numerical results.

Exponential regime.—For q . qmax the continuum the-
ory is no longer valid, but we can investigate P�k� by using
numerical simulations. As Fig. 2b shows, in this regime,
as q ! 1, P�k� develops an exponential tail. This tran-
sition to an exponential can be understood in the terms
of Model B discussed in Refs. [8,11], demonstrating that
growth is an essential condition for power-law scaling.
However, in the limit q ! 1 the growth is suppressed; the
frequent rewiring process acts on a network with an almost
constant number of nodes. The convergence of P�k� to an
exponential in this regime indicates that for this choice of
parameters the model belongs to the class of networks de-
fined by the ER [6] and WS [7] models [12].

Application to real networks.—To illustrate the predic-
tive power of the obtained results, we chose to investigate
the collaboration graph of movie actors [7]. In this net-
work each actor is a node, and two actors are connected
if they were cast in the same movie during their career.
This network grows continuously by the addition of new
actors (nodes). However, an important contribution to the
network connectivity comes from another frequent event:
A veteran actor plays in a new movie, establishing new
internal links [process (i)] with actors (nodes) with whom
he/she did not play before. Since links are never elimi-
nated, rewiring is absent �q � 0�; thus the evolution of
this network can be described by a two parameter model
�p, m�: With probability p a new actor is introduced,
playing with m other actors, and, with probability 1 2 p,
m new internal links are generated by established actors
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FIG. 2. (a) Comparison between the numerical simulations
and the prediction of the continuum theory in the scale-free
regime. In the simulations we used t � 100 000, m0 � m � 2.
Circles: p � 0.3, q � 0; squares: p � 0.6, q � 0.1; dia-
monds: p � 0.8, q � 0. The data were logarithmically binned.
The parameter-free predictions of Eq. (10) are shown as dashed
lines. (b) The numerically obtained P�k� in the exponential
regime, shown on a semilogarithmic plot, indicating the conver-
gence of P�k� to an exponential in the q ! 1 limit. Circles:
p � 0, q � 0.8; squares: p � 0, q � 0.95; diamonds: p � 0,
q � 0.99.
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FIG. 3. The connectivity distribution of movie actors (circles)
based on the Internet Movie Database containing 212 250 actors
and 3 045 787 links (the same data was used in Refs. [8,11]).
The data were logarithmically binned. The dashed line cor-
responds to the two parameter fit offered by Eq. (10) with
p � 0.937 and m � 1. Note that TV films and series were ex-
cluded from the network because they lump together over many
years actors that have not really played together on the same set.

playing in new movies. To obtain p and m, we fit the con-
nectivity distribution P�k� obtained for this network with
Eq. (10), obtaining an excellent overlap for p � 0.937 and
m � 1 (Fig. 3). The corresponding parameters of Eq. (10)
are k�p, q� � 31.68 and g�p, q, m� � 3.07. This indi-
cates that 93.7% of new links connect existing nodes, and
only 6.3% of links come from new actors joining the movie
industry. Naturally, in reality the number of actors cast in a
movie varies from one movie to another. It can be shown,
however, that fluctuations in m do not change the exponent
g [13]. Also, in more realistic models different parameters
should be used for the number of links for new actors and
for new internal links. However, such detailed modeling
goes beyond the scope of this paper.

Discussion.—While in critical phenomena power-law
scaling is typically associated with universality, implying
that the exponents are independent of the microscopic de-
tails of the model, here we demonstrated that no such
universality exists for scale-free networks, the scaling ex-
ponents depending continuously on the network’s parame-
ters. On the other hand, our results indicate the existence
of a different criterion for universality based on the func-
tional form of P�k�: Our model predicts the existence
of two regimes, the scale-free and the exponential regime.
Some of the large networks investigated so far, such as
the www or the actor network, are described by scale-free
networks [3,5,8,10]. However, a number of fundamental
network models [6,7] lead to P�k� that decays exponen-
tially, indicating the robustness of the exponential regime
as well [12].
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