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Abstract

Background: Deep mining of healthcare data has provided maps of comorbidity relationships between diseases.
In parallel, integrative multi-omics investigations have generated high-resolution molecular maps of putative
relevance for understanding disease initiation and progression. Yet, it is unclear how to advance an observation of
comorbidity relations (one disease to others) to a molecular understanding of the driver processes and associated
biomarkers.

Results: Since Chronic Obstructive Pulmonary disease (COPD) has emerged as a central hub in temporal comorbidity
networks, we developed a systematic integrative data-driven framework to identify shared disease-associated genes
and pathways, as a proxy for the underlying generative mechanisms inducing comorbidity. We integrated records from
approximately 13 M patients from the Medicare database with disease-gene maps that we derived from several
resources including a semantic-derived knowledge-base. Using rank-based statistics we not only recovered
known comorbidities but also discovered a novel association between COPD and digestive diseases. Furthermore,
our analysis provides the first set of COPD co-morbidity candidate biomarkers, including IL15, TNF and JUP, and
characterizes their association to aging and life-style conditions, such as smoking and physical activity.

Conclusions: The developed framework provides novel insights in COPD and especially COPD co-morbidity
associated mechanisms. The methodology could be used to discover and decipher the molecular underpinning
of other comorbidity relationships and furthermore, allow the identification of candidate co-morbidity biomarkers.

Background
Chronic Obstructive Pulmonary Disease (COPD) is one of
the five major chronic disorders in the WHO program for
non-communicable diseases [1]. The disease is caused by
inhalation of irritants (e.g. tobacco smoking or indoor pol-
lution among others) in susceptible patients, and its

prevalence is approximately nine percent of the adult
population above 45 years of age. COPD is currently the
fourth killer in Western countries and generates a major
burden on healthcare systems worldwide [2].
Heterogeneity of both clinical manifestations [3] and

disease progression [4] is a hallmark feature of COPD.
Current clinical assessment of stable patients [5] relies on:
(i) degree of lung function impairment (FEV1); (ii) symp-
toms score; (iii) risk for COPD exacerbations; iv) presence
of co-morbidities; and, v) systemic effects of the disease
[6–10]. While quantitative assessment of the first three
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criteria allows to allocate a given patient into one of the
four disease severity stages (A to D) proposed by GOLD
[5], a better understanding of co-morbid conditions is still
needed for optimization of case management. There is
also a need for a clear distinction between systemic effects
of COPD (i.e. low-grade systemic inflammation and/or
skeletal muscle dysfunction) [11–13] and some co-morbid
conditions due to the descriptive nature of the reporting
[14] with poor insight into underlying mechanisms of
these phenomena [15]
Co-morbidities in COPD have well-known negative

impact on patients’ prognosis and a close association
with high use of healthcare resources [16, 17]. Conse-
quently, the question is: Is COPD a risk factor for co-
morbidities? The question has been has been recently
answered negatively [18]. The authors suggest that risk
factors, such as tobacco smoking and physical inactivity,
explain the co-morbidity clustering seen in COPD pa-
tients, but COPD itself does not constitute a risk factor
for co-morbidities. This finding, however, relies on re-
search carried out in early COPD [19, 20].
The current study, in contrast, is based on a broader

analysis and supports an alternative hypothesis indicat-
ing that patients with COPD may show higher risk for
co-morbidities compared to non-COPD patients. We
also hypothesized that abnormal regulation of key bio-
logical pathways in COPD patients, as well as shared
underlying mechanisms, may explain certain clustering
of co-morbid conditions often observed in the clinic.
Moreover, the current hypothesis is consistent with the
observation that disease co-occurrence also has a tem-
poral component as shown in [21]. Therefore, uncovering
the shared comorbidity-associated mechanisms should
allow (i) case identification (e.g. to identify high risk pa-
tient with poor prognosis due to co-morbid conditions
[22, 23]; (ii) define preventive strategies; and, (iii) explore
novel therapeutic approaches [24]
In this study, we explore registries of approximately 13

M patients from the Medicare database [25], driven by
two objectives. First, we analyzed if COPD individuals
were at higher risk of being diagnosed with other diseases
and if the association was modulated by age or gender.
Second, after identifying COPD co-morbidities, we

performed a data-driven identification of shared mecha-
nisms with co-occurring diseases through the investiga-
tion of shared disease-associated genes and pathways.
To this end, we generated a comprehensive disease-gene
map by combining disease-gene maps from different re-
sources and using a semantic-derived knowledge-base
[26] to map all those maps into entrezgene-ICD9 associ-
ations; entrezgene denotes the gene names from the
NCBI database [27]. We assume genes that are mapped
to two different diseases can be used as a proxy of the
existence of common mechanisms between the two

diseases [28, 29]. Hence, we used disease-gene associa-
tions to define mechanistically derived disease-disease
associations.
The definition of these distances allowed us (i) to group

and rank COPD-associated co-morbidities based on co-
occurrence and/or mechanistic distance measurements;
and, (ii) to identify candidate biomarkers that measure
COPD-comorbidity status. Moreover, we characterize the
novel candidate biomarkers linked to COPD co-morbidities
by investigating their association with COPD risk factors
such as smoking or physical inactivity. Finally, we com-
pared the data-driven results with the state-of-the-art in the
field and reported clinical knowledge.

Methods
Estimation of ϕ and Relative Risk (RR)
Generally, co-morbidity refers to the tendency of two dis-
eases to appear in the same patient more frequently than
expected by chance. Large-scale medical records allow for
the systematic identification of such disease pairs.
Here, we use the Medicare claims database introduced
in [25, 30]. The diseases are ICD9-CM coded, we use
the 3-digit level. Following previous work [25, 30–32],
we use two complementary quantities to quantify the
strength of the co-morbidity of two diseases i and j:

(1) The Relative Risk, corresponding to the number of
patients diagnosed with both diseases compared to
the random expectation based on their prevalence
in the general population:

RRij ¼ Cij= I iI j=N
� �

;

where Cij is the number of patients affected by both
disease and Ii and Ij denote the incidences of
diseases i and j in a population of size N.

(2)The Φ –correlation, which gives the Pearson
correlation for binary variables:

Φij ¼ N Cij
� �

– IiI j
� �

=sqrt I iI j N−I ið Þ N−Ij
� �� �

:

Using these definitions, we identify co-morbid diseases
with a disease pair i and j for which RRij > 1 and Φij > 0.
Note that the two co-morbidity measures are not com-
pletely independent of each other and both have certain
biases: For instance, Φ may provide small values even
for highly associated diseases if their prevalences are
very different, while RR may show abnormally large
values for diseases with very small prevalence. Since the
two measures are complementary in their respective
biases, we consider both during the identification of co-
morbidity associated pathways and biomarkers.
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Hierarchical clustering of COPD-associated diseases
To cluster the ICD9 COPD associated codes we computed
a proximity measure between diseases as the inverse of the
RR for all pairs of ICD9 codes. The hierarchical clustering
was computed by using the hclust function in R [33]. The
order of the diseases was retrieved and was given to the
clinicians as the input for grouping the disease considering
both the ordering and a clinical expertise.

Gene disease map
The gene-disease map uses the following type of resources.

(1)Gene-disease maps including CTD [34], PheGenI
[35] and OMIM [36]. Additionally we include
text-mining based mapping that we generated
as part of the NCI cancer gene index [37] as
well as further COPD specific text mining [38].

(2)Disease ontologies including MeSH [39], ICD9 [40],
ICD10 [41], the NCI Thesaurus [42] and
SNOMED-CT [43].

For each integrated association we retained reference
and evidence information as far as available in the ori-
ginal resource. Also this information can be used for
subsequent filtering and ranking we decided to include
all available associations for the integration step. We
then used the UMLS Metathesaurus [44] to derive
mappings between the different medical vocabularies
and integrate the different gene-disease association re-
sources which had used different disease vocabularies.
The set of gene-disease associations used for analysis
therefore represents the non-redundant sum of all indi-
vidual integrated sources. All mappings and resulting
gene – disease associations are publicly available in the
COPD Knowledge-Base [26]. All those resources are de-
tailed in the Additional file 1: Table S8. Most resources
are publicly available.

PCA analysis
Briefly, Principal Component Analysis (PCA) is a multi-
variate analysis method that identifies the components
that maximally explains the variance of a given data-set.
The first component is the vector explaining most of the
variance; n component is the vector that explains most
of the variance and is orthogonal to components n-1 to
1. PCA were computed in R using PCA function in the
FactoMineR package [45].

Ranking disease groups
Given a set of distance measurements between a disease
group (DG) and COPD (SetM) the order of relevance of
DGs was computed by ranking the DG using as a refer-
ence value the sum of all dist(Measure) where dist is the
ranking of the DG using distance Measure for all

Measures in SetM. For instance, the final ordering of DG
is based in the sum of the rankings provided by Φ, RR,
summarized gene-based distance (using JC and phi2) and
summarized pathway-based distance (using the gene-sets
of GO, Reactome and KEGG).

Ranking genes and pathways
Genes were ranked based on their association to COPD-
comorbidity. To this end first a matrix mapping1_DG
was computed between DG and genes where 1 denotes
gene-DG association and 0 otherwise. Then we com-
puted a gene relevance measure using Φ (RR) as the
ranking obtained from computing:

relevance geneXð Þ ¼
X

DG
mapping1–DGgeneX;DGΦDG:

Relevance computes the sum of the Φ (similarly for RR)
for those DGs that geneX has been associated to. The final
ranking of a gene is based on the average of the ranks
computed by using Φ and RR. The ranking was computed
for both mapping1_DG and mapping2_DG.
In the case of pathways and gene-sets the measure is

similarly computed but using the computed disease-
gene_set matrices.

Rank combination
Rank combination in disease groups is calculated by first
summing for each DGs the individual ranks obtained
from two measures (e.g. from RR and Φ); secondly the
sum was used to rank again the disease groups. Simi-
larly, to what is used in many ranking procedures, when
multiple DGs obtain the same sum receive shared com-
bined rank calculated from summing all occupied com-
bined ranks and dividing by number of affected DGs. As
an example from Fig. 1, DG1 has a Rank of 7 based on
RR and a Rank of 1 based on Φ. The sum of both ranks
is 8; when compared with the rest of sums from all DGs
the new Rank of DG_1 is 3.

Significance computed for genes and pathways
To estimate the Family Wise Error Rate (FWER) of a
given gene based on the ranking we generated 10000
rankings as the sum of two random rankings considering
the same total number of genes; for each permutation
we computed the maximum value observed (maxperm).
For each gene we estimated the FWER as “number of
times the rank observed was larger than maxperm” di-
vided by the total number of permutations.

Overrepresentation analysis in gene-sets
For Gene Set Analysis we used the Reactome, KEGG
and BioCarta gene sets contained in the Molecular Sig-
nature Database, MSigDB [46] and the Biological Pro-
cesses category from Gene Ontology [47] we filtered for
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gene-sets with at least 20 genes and less than 200 in order
to exclude too generic or too specific terms. To compute
the enrichment of a disease-associated set of genes with a
gene set we run the Fisher test [48]; Benjamini-Hochberg
was used to adjust for multiple-testing [49]. A disease-
associated set of genes was significantly associated to a
gene-set if adjusted p-value < 0.1.

Text-mining
We made use of Polysearch [50] and the novel PolySearch
2 [51] to search for associations between set of biomedical
terms and genes. We used the basic settings except for the
number of publications to be considered. Three sets of
words were used: set1 = (“aging”, “age”), set2 = (“smo-
king”,”smoke”,”smoker”), set3 = (“training”,”healthy life
style”).

Results and Discussion
Co-occurrence based on COPD co-morbidity analysis
Disease group associations with COPD
To identify COPD-associated diseases, we computed
both Relative Risk (RR) and Pearson’s correlation for
binary variables (Φ) between 3-digit ICD9-code diseases
(ICD9 from now on) available in the health records of
U.S. Medicare (Hidalgo et al, [25]). The total amount of
patient records in Medicare was N = 13,039,018; all indi-
viduals are over 65 years, mostly white patients (>90 %)
and there is an overrepresentation of females (58.3 %)
[25]. For an initial assessment of COPD (ICD9 code
496) associated diseases, we selected all ICD9 codes with
RR > 1.2. The set was named ICD9selected.
Many ICD9 codes have a very similar definition and

it poses problems when doing analysis at 3-digit
ICD9 level [18, 52, 53] because closely defined ICD9

Fig. 1 Disease groups and their association to COPD (ICD9 code = 496). Each row denotes a Disease Group identified (described in panel (d)). RR, Φ,
Genes and Pathways denote the ranks of the distances between COPD and the DG; Combined columns denote the combined rank of (panel (a)) RR
and Φ and (panel (b)) Genes and Pathways respectively. In panel (c), COMBINED denotes the final rank of the DG when all four ranks (RR, Φ, Genes and
Pathways) are combined. In COMBINED DG5 (malignancies in the lower respiratory track) is the higher ranked disease group and DG16 is the lowest
ranked (parasomnias). See Methods: Rank combination for details of how ranks are computed
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codes show high co-morbidity between them. Aggregat-
ing ICD9 codes into groups have been applied before [54]
however direct application of clustering algorithms is not
optimal (see Additional file 2: Figure S1). In order to iden-
tify relevant sets of ICD9 codes with a shared clinical
meaning we aggregated ICD9-codes into disease groups
(DGs) using a 2-step process. First, we computed a hier-
archical clustering of ICD9selected using RR as distance
between codes (see the ordering in Additional file 3: Table
S1). Second, combining the computational ordering of the
hierarchical clustering with clinical expert knowledge, we
grouped the ICD9-codes into DGs, as depicted in
Additional file 3: Table S1, Additional file 4: Table S2 and
Fig. 1d. Finally, the RR and Φ values between each DG
and COPD were computed by considering that any
individual was associated to a DG if the individual was
diagnosed with at least one ICD9 code pertaining to the
DG (see Methods).
As expected [25, 55, 56] we observed that RR and Φ

often correlate only weakly. Therefore, in order to pro-
vide a global view (see Fig. 1a), we ranked DG-COPD as-
sociations using three measurements RR, Φ and their
combined rank (see Methods). The top ranked DGs are
Dependence (DG15) and Infectious diseases (DG3). We
also observe expected disease groups such as Respiratory

diseases (DG1) and Malignancies of lower respiratory
track (DG5) in third and fifth rank respectively.

Changes over age of disease risk association
We hypothesized that co-morbidity patterns of COPD
could vary with age and/or gender. We therefore com-
pared the prevalence of DGs in COPD and in non-
COPD patients over age and gender using 5-year age
windows (see Fig. 2). We identified two major types of
age-associated co-morbidity progressions. In the first
type there was a constant difference between prevalence
in COPD and non-COPD while observing a growth of
DG prevalence in both groups (Fig. 2a, b, d). In the sec-
ond type, the differences in prevalence decreased with
increasing age (Fig. 2c). Only in DG10 (Genitalia and
urinary disorders) the difference in prevalence increased
with age (see Additional file 5: Figure S2).
Additionally, we conducted a bootstrapping-based esti-

mation of confidence intervals of the values observed; in
most cases the confidence intervals were very small.
Additionally, we compared the prevalence of DG sep-

arately in men and women in COPD (summarized in
Additional file 4: Table S2). When considering RR, co-
morbidity is higher in females than in males for most
DGs; especially in Tuberculosis related alterations

Fig. 2 Prevalence of selected DG over age for COPD and non-COPD individuals. Each panel shows, for a given DG, the prevalence of the DG in
non-COPD (blue) and COPD (red) individuals over windows of 5-years (e.g. 75 denotes the prevalence between 73 and 77 years both included).
Prevalence is provided as a value between 0 and 1. DGs 2, 8, 11 and 19 are shown in panels (a), (b), (c) and (d) respectively. In all cases the
prevalence is (as expected based on the selection of ICD9selected) higher in COPD individuals; however the differences between age are different
among groups
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(DG12), Substance abuse related alterations (DG15) and
Other alterations (DG25). When considering Φ, we
identified Other alterations (DG25) and Bone and car-
tilage disorders (DG27) more strongly associated in
women; while Respiratory diseases (DG1), Infectious
diseases (DG3), Malignancies of lower respiratory tract
(DG5), Digestive alterations (DG8), Circulation disor-
ders (DG11), Nutrition disorders (DG18), Endocrine
diseases (DG19) and Renal diseases (DG21) are more
strongly associated in men. We conclude that gender is
a relevant co-morbidity covariate.

Shared mechanisms in COPD co-morbidity
In our working hypothesis co-morbidity is the outcome
of shared dis-regulated molecular mechanisms between
DGs and COPD. Therefore, disease co-occurrence has
a mechanistic component that, when uncovered, will
provide insights into COPD. To identify comorbidity
disease mechanisms, we use information about gene-
disease associations. We first generated a compre-
hensive disease-gene map and then used it to compute
mechanistic-derived association measures between
diseases [28].

Integration-based disease-gene maps
In order to generate a comprehensive disease-gene map
between ICD9 and entrezgene gene nomenclature, we
first considered several disease-to-disease mappings
(bridging between ontologies such as those in UMLS)
and several disease-gene mappings (see Fig. 3); secondly,
we integrated them into a COPD Knowledge-Base [26]
including a semantic representation that allowed us to
identify all associations between entrezgene genes and 3-
digit ICD9 codes (mapping1). Figure 3 depicts the data-
bases used during the mapping which was then used to
generate a map between DG and entrez genes (map-
ping1_DG) by considering a gene-DG association if any
of the ICD9 codes in a DG was associated to the gene.
Next we generated a map between ICD9 codes and

gene sets. For each pair of gene-set and ICD9 code we
used mapping1 to compute Fisher tests and then applied
Benjamini-Hochberg [49] correction for multiple-testing
(adjusted p-value). We included associations with an ad-
justed p-value < 0.01. The same procedure was applied
for DG by using mapping1_DG. We considered the gene
sets available in including KEGG, Reactome and Biocarta
as derived from MSsigDB [46] and the Biological Pro-
cesses category from GO [47, 57].

Fig. 3 Framework to uncover co-morbidity associated mechanisms. The figure depicts first the use of gene-disease associations from multiple
disease ontologies/nomenclatures and multiple disease-gene databases (and mappings from UMLS) to generate mapping1 (red block: 1) and its
extension through PPI associations to generate mapping2 (red block: 2). Secondly, the figure depicts the computation of Disease Groups (red block: 3).
Finally, the figure depicts the mapping of gene-DGs that results in mapping1_DG and mapping2_DG (red block: 4) and their pathway extensions
(red block: 5)
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For many ICD9 codes and DGs only few associated
genes were identified in mapping1 or mapping1_DG re-
spectively, thus limiting the outcomes of the overrepre-
sentation analysis (see Methods). To extend the
mapping, we made use of the state-of-the-art Protein-
Protein interaction network [58] that includes 14000
high-quality binary protein-protein interactions. We as-
sociated to each ICD9 (DG) those genes connected in
the PPI to those connected to the disease (disease group)
in mapping1 (mapping1_DG). We denote the new map-
ping mapping2 (mapping2_DG). Using mapping2 (map-
ping2_DG) a new PPI-derived gene-set vs ICD9 (DG)
map were computed.

ICD9 and disease group (DG) distances to COPD
To define mechanistically derived disease-COPD dis-
tances we combined several complementary measures of
association between COPD and disease groups using
several layers of information: based on genes, based on
pathways and based on their possible extensions by PPI.
However, we investigated how to combine the informa-
tion in a way that (1) optimizes heterogeneous sources
while (2) excluding outliers.
When considering gene-disease and pathway-disease

based associations between DGs and COPD we computed
three different measures: (1) number of common features
(T), (2) ratio between number of common features and
the total number of pooled DG-COPD features (Jaccard-
type measurement, JC), and (3) Pearson’s binary correl-
ation (named phi in order to differentiate from disease
co-occurrence Φ). Note that features may be refer to
gene or pathways depending on the mapping used.
The methodology used to compute the final distances is

described in the Additional file 6 (see also Additional file 7:
Figure S3, Additional file 8: Figure S4, Additional file 9:
Figure S5 and Additional file 10: Figure S6, Additional file
11: Figure S7 and Additional file 12: Figure S8 and
Additional file 13: Figure S9). Briefly, we performed iterative
distance selection where very similar distances were com-
bined (GO, KEGG and REACTOME derived measures)
and outliers were excluded (Biocarta-based distances).
Finally, two disease-COPD measures were considered:
gene-based and gene-set-based distances (see Methods); see
Additional file 6), each one combining the three measures
T, JC and phi. The mechanistically derived ranking is
summarized in Fig. 1b.
We combined the ranking-based distances of genes

and gene-sets (Fig. 1b) and co-ocurrence based measure-
ments (Fig. 1a) into a single final measure by ranking
over the sum of all individual distances (see Fig. 1c). As
expected, we observed among the top-ranked DGs: DG5
(Malignancies in the lower respiratory tracks) and DG1
(Respiratory diseases). Furthermore, among the top ones,

we identified known COPD-associated disease groups such
as Heart Diseases (DG2). Interestingly, we identified a novel
disease group as first ranked: Digestive Alterations (DG8).
Next, we performed a manual exploration of our dis-

tance calculations by manually examining the strongest
co-morbidity and mechanistic association, COPD – DG5
to see whether the association reflects biomedical ex-
pertise. To this end, we identified which features are
shared between COPD, DG5 and each of the ICD9 codes
in DG5 (Additional file 7: Figure S3); when considering
gene-sets KEGGs Focal Adhesion, Renal Cell Carcinoma
and Melanoma and GO-Biological Processes Positive
Regulation of Cell Proliferation, Behaviour, Regulation of
Protein Metabolic Process and Chemical Homeostasis are
shared; many cancer related and/or generic pathways are
also observed. When investigating the genes we identi-
fied several associated with the MAP-Kinase pathway
(e.g. BRAF, MAP3K8) and the immune system (e.g. IL1,
IL1R, and TNFRSF11B) (Additional file 7: Figure S3);
importantly, the MAP-Kinase pathway has been associ-
ated with both COPD ([59–61] and malignancies in the
lower respiratory tracks. We acknowledge that the set of
genes and pathways identified may show a bias towards
the large amount of positive results gathered about
cancer in databases; however, we tried to minimize such
effect by using the PPI-based extension association that
is generated based on unbiased high-throughput experi-
mental evidence [58].

Principal candidate markers of disease co-morbidity: genes
and pathways
By combining co-occurrence information (RR and Φ)
with disease-gene mappings we aimed to identify the
most relevant genes and pathways associated with
COPD co-morbidity. For each gene we computed a
score that sums the RR values of each of the DGs the
gene is associated with. The value is then used to rank
all genes. Similarly, scores and rankings are computed
using Φ; and lastly a final ranking is computed by combin-
ing both Φ-derived and RR-derived rankings. The Family
Wise Error Rate (FWER) was computed (see Methods)
and genes with FWER < 0.05 are shown in Fig. 4.
Importantly, the top 3 genes are Human Leukocyte

Antigen genes (HLA), which are major histocompatibility
complexes: HLA-DQB1 (associates with diabetes mellitus
among others), HLA-B (associated with immunodefi-
ciency) and HLA-DQA2 (associated with diabetes mellitus
and celiac disease). Also from the HLA family is signifi-
cantly identified HLA-G (tumor scape) and HLA-DQA1
(associated to diabetes mellitus [62], celiac disease [63]
and juvenile idiopathic arthritis [64] among others).
Among the non-HLA markers we identify relevant
markers such as ACE, Angiotensin I Converting Enzyme
[65] which is associated to cardiovascular complications,
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and SMAD3 that mediates multiple signaling pathways
and TGF-beta-mediated transcription [66]. In addition, we
observe many immune-associated genes, such as
STAT1 and IL15. We performed a similar analysis
using gene-sets to identify top-candidate gene-sets as-
sociated to co-morbidity. Significant results are shown
in Additional file 14: Table S3.
Finally, we investigated if the identified COPD-

comorbidity associated genes have also been associated
to smoking, aging or physical activity. We first used a
text-mining approach (PolySearch [50] and PolySearch 2.0
[51], see Methods); the results of the queries are shown in
Additional file 15: Tables S4, S5 and S6 respectively. Only
TNF was found associated with smoking.
Secondly, and in order to overcome text-mining biases

[67] we investigated the selected genes in High-
throughput based studies of gene expression and/or
DNA Methylation for smoking, age and training (as a
proxy for physical activity); see description in Additional
file 16: Table S7.
While we acknowledge that results of those studies (see

Fig. 4) may depend in selection criteria, number of indi-
viduals and ethnicity among others, we obtain consistent
observations: (a) no selected genes were found significant
in smoking studies, (b) some selected genes have been as-
sociated to age and/or gender. Finally, SELE, TNF and
JUP, which are not associated with age, gender or smoking
are relevant candidates to be considered in further studies;

associations of these three genes with DGs are reported in
Additional file 1: Table S8.

Conclusions
We show that by integrating co-occurrence information
with gene-disease mappings it is possible to rank disease
co-morbidities and to identify co-morbidity features of
interest (such as genes and pathways) and possibly help
uncover the underlying disease mechanisms. In this
process we have generated no original raw data but we
have made use of existing repositories and knowledge-
bases available.
In this work, we first grouped COPD-associated ICD9

codes into clinically relevant disease groups which were
then ranked based on co-occurrence measures (RR and
Φ). By this approach we identified in top associated
expected diseases such as Respiratory Diseases and Ma-
lignancies in the Lower respiratory track both considered
as positive controls; we also identified the genes involved
in the association such as BRAF and IL1. Furthermore,
we showed that COPD co-morbidity depends on age
and gender, with different patterns of dependency for
different diseases. We consider that this observation
warrants more detailed future studies aimed at updating
clinical management and diagnosis of COPD such as
GOLD clinical protocols. Interestingly, only in DG10
(Genitalia and urinary disorders) the difference in
prevalence increased with age (see Additional file 5:

Fig. 4 Candidate biomarkers for COPD-comorbidity. Included are the genes selected as candidate biomarkers for FWER < 0.05 (see Methods). For
each gene it is shown if it has been associated to Smoking, Aging and/or Physical activity based on gene expression (see Additional file 16: Table S7),
DNA Methylation (see Additional file 16: Table S7) or PolySearch-derived [50, 51] text-mining analysis (see Additional file 15: Tables S4, S5 and S6)
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Figure S2). This observation is supported by [68] and
we hypothesize that it can explained by age-related
muscle dysfunction in elderly patients with COPD [12, 13],
which may affect urinary muscles.
We combined a robust mechanistic-derived ranking of

COPD-comorbidity (based in shared genes or pathways,
Fig. 1b) with a co-ocurrence derived ranking (Fig. 1a). The
identified ranking (Fig. 1c) contains sufficient positive
controls to also investigate the novel top-associations in
more detail. For instance among those DG5, Malignancies
of lower respiratory track, includes lung cancer which is
one of the top 3 causes of death in patients with COPD
[7, 69]. The most interesting novel association was
DG8, Digestive disorders. There are studies supporting
this association starting from 1991 when it was ob-
served a significant co-occurrence between COPD and
oesophageal-gastric and duodenal disease [70]. More
recently, it has been shown that COPD patients were
more likely to consult about digestive system diseases
(Odd Ratio: 1.31; 95 % CI 1.02-1.68) [71]. Keely S et al,

[72] proposed that ischemia-driven loss of epithelial
barrier function may represent an underlying cause and
chronic nature of many gastro-intestinal diseases in pa-
tients with COPD. Of all the 32 ICD9 codes contained in
DG8, only a subset were associated to genes and/or path-
ways; out of these, the strongest associated codes were:
Other disorders of intestine, Ulcerative colitis and Intes-
tinal malabsorption. Importantly, the co-morbidities be-
tween COPD and ulcerative colitis (Ekbom et al, [73]) and
chronic liver disease [74] respectively, have been reported
previously, as well as, generally, the co-morbidity between
COPD and digestive alterations [71, 75]. Interestingly, the
top KEGG pathways linking DG8 and COPD are associ-
ated to third diseases such as Type 1 Diabetes, Asthma
and Pancreatic Cancer (Fig. 5d), but also to specific path-
ways, such as the Intestinal Immune Network for IgA pro-
duction (Fig. 5d) (which describes the production of non-
inflammatory immunoglobulin A antibodies that serve as
defense against micro-organisms) and other immune asso-
ciated pathways. Among the top genes shared between

Fig. 5 Genes and Pathways relating COPD and Digestive Alterations Disease Group (DG8). The figure shows the association between genes (a),
Gene Ontology (b) and KEGG (d) gene-sets for those ICD9 codes included in DG8; the description of ICD9 codes is provided in panel (c). A dark
(light) blue square denotes if the association between disease and pathway or gene was computed as significant when using either mapping1_DG or
mapping2_DG (only mapping1_DG). Top 10 genes or gene-sets are shown; and then only ICD9 codes with at least association with an item are shown.
The ICD9 codes are ordered using the number of associations with genes or gene-sets in the total set; from lower (left) to higher (right). The last two
elements denote the association with DG8 and COPD. Similar information for Biocarta and Reactome is depicted in Additional file 12: Figure S8. In
panel (c), those ICD9 codes shown in all other panels are in bold
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COPD and DG8, we identified: AES (NF-kappa-B-regu-
lated gene expression), KRT13 (Keratin 13, Type1),
KRT40 (Keratin 40, Type1) and CCR6 (Chemokine C-C
Motif Receptor 6; relevant in antigen-driven B-cell
differentiation).
When comparing the analysis outcomes of top-ranked

DGs with known COPD co-morbidities (such as Type 2
Diabetes (T2D), Cardiovascular Diseases [76, 77] we
found all expected diseases but DT2. We computed the
associations between COPD (ICD9 code 496) and ICD9
code 250 (Diabetes) by RR (1.027) and Φ (0.005). We ac-
knowledge that by this data-driven approach Diabetes is
not being selected based on a threshold selection; how-
ever, many pathways associated to T2D and metabolic-
associated diseases are being selected by our methodology.
Furthermore, we made 5 groups of ICD9 codes for anx-
iety, depression, diabetes, heart failure and ischemic
heart respectively (classical COPD-comorbidities); for
all group we also computed the age-window prevalence
plots (Additional file 8: Figure S4). We observe that for
anxiety and depression there is a difference in preva-
lence in COPD and non-COPD patients that decreases
for elderly individuals. The difference is large, and re-
mains constant, for heart failure and ischemic heart
while it is small and constant for diabetes.
When investigating top COPD-comorbidity markers, we

ranked genes based on their association with COPD-
comorbidity by combining disease-gene information and
co-occurrence measurements (Φ and RR). We again con-
sider the top identified genes as positive controls, as most
of them are Human Leukocyte Antigen (HLA) genes; most
of these genes are shown associated from GWAS and
genotype studies in immune associated diseases [78, 79]
and cancer [80]; furthermore it has been shown that in
many diseases patients need to be stratified based on HLA
genotypes, such as in [81]. Despite that the identification
of HLA-genes in the top of the list may reflect real co-
morbidity associations and/or a bias towards deeply-
genotyped diseases; we consider that further studies are
required to address this question, but in any case HLA-
genes are arguably major candidates for co-morbidity
status. Among the non-HLA markers IL15 has already
been associated to the chronic cavitary pulmonary as-
pergillosis [82] and to virus-induced COPD exacerba-
tions [83] and, importantly, IL15 has been associated
with COPD severity [84]. We consider IL15 as a rele-
vant biomarker candidate for addressing COPD comor-
bidity status however IL15 has also been associated to
aging and physical activity.
From the selected candidate biomarkers there are

three genes that have not been associated to any other
confounders (such as age, gender and training): Selectin
E (SELE, part of the selectin family of cell adhesion pro-
tein; found in cytokine stimulated endothelial cells),

Tumor Necrosis Factor (TNF, necessary in the induction
of acute response, which includes the production of C-
Reactive Protein; produced by several immune cells) and
Junction Plakoglobin (JUP, part of catenin family and en-
codes major cytoplasmic protein). Only TNF have been
previously associated to COPD co-morbidity [85, 86].
This result does not exclude possible associations be-
tween candidate genes (SELE, TNG or JUP) and shared
risk factors however, in the search of co-morbidity bio-
markers, our results in Fig. 4 prioritize them against
other genes with risk factor associations.
We acknowledge that all reported results should be

considered within the following limitations: (i) disease-
gene associations are biased towards published (positive)
results, (ii) ICD health records have biases and may dif-
fer from countries and (iii) some of the disease groups
identified have a very broad definition that may affect
their relevance such as DG23 and DG25. However, des-
pite possible limitations and biases of our “data and
mapping driven” methodology we are able to highlight
the need to include digestive alterations in future studies
addressing COPD co-morbidity and an initial set of
candidates that drive such association mechanistically.
Furthermore, we identified a set of genes as candidate
biomarkers for COPD co-morbidity.

Additional files

Additional file 1: Table S8. Association between genes not-associated
with age, smoking or life-style and disease groups. In each cell, a 2 (1) denotes
that association between gene and disease cluster was identified using
mapping1_DG and mapping2_DG (only when mapping2_DG). (XLSX 38 kb)

Additional file 2: Figure S1. Heatmap of ICD9 codes associated with
COPD. RR-based heatmap between 3-digit ICD9 COPD associated disease
codes (RR > 1.5). (a) Complete heatmap without reordering. The size and
color of each square denotes the strength of the association in RR. The
heatmap is showing the ICD codes ordered alphabetically. (b) Detail of a
section of the heatmap with RR-based highly associated codes that show
very similar definitions of codes. (PDF 3755 kb)

Additional file 3: Table S1. Disease groups in detail. ICD codes are
shown as ordered by a RR-based hierarchical clustering; the tables includes
the information of co-occurrence between COPD and the ICD9 codes
selected in ICD9selected. The columns of the table denote: ICD9: the ICD9
code. GROUP: the DG the ICD9 code pertains to. NAME: the name of the
ICD9 3-digit group. prevalence ICD: prevalence of ICD9 code in Medicare.
common_diagnoses: prevalence of ICD9 code and COPD simultaneously.
RR: COPD-ICD9 code relative risk. Φ: COPD-ICD9 code Φ. (XLSX 46 kb)

Additional file 4: Table S2. COPD and Disease Groups by gender. For
each DGs the co-occurrence of a DG and COPD is studied by gender and
also the differences between genders are computed. For each gender
the following columns show: prevalence ICD: prevalence of ICD9 code in
Medicare. common_diagnoses: prevalence of ICD9 code and COPD
simultaneously. RR: COPD-ICD9 code relative risk. Φ: COPD-ICD9 code Φ. %:
the proportion of COPD individuals that also are diagnosed with DGs.
Additionally differences between Male and Female are computed for RR, Φ
and %. And the ratio of the differences and the Male Values. (XLSX 30 kb)

Additional file 5: Figure S2. Prevalence of selected DG10 (Genitalia
and urinary disorders) over age for COPD and non-COPD individuals. DG
prevalence in non-COPD (blue) and COPD (red) individuals over windows
of 5-years (e.g. the 75 age denotes the prevalence between 73 and 77
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years both included). Prevalence is computed between 0 and 1. In this
case the prevalence difference between populations increases over time.
In (a) the prevalence is depicted between the maximum 1 and the minimum
0, while in (b) the prevalence is zoomed into the ranges of the DG10.
(PDF 384 kb)

Additional file 6: Supplementary Materials and Methods. (DOCX 18 kb)

Additional file 7: Figure S3. Genes and Pathways relating COPD and
Malignancies of Lower Respiratory Track (DG_5). The figure shows the
association between genes (a) and (b, c) pathways for those ICD9 codes
included in DG_5. A dark (light) blue square denotes that the association
between disease and pathway or gene was computed as significant
when using either mapping1_DG or mapping2_DG (only mapping1_DG).
Selection criteria for the display of diseases, genes and gene-sets are the
same as those described in Fig. 5. (PDF 1143 kb)

Additional file 8: Figure S4. Targeted Co-morbidity. Prevalence
differences over age windows for targeted ICD9 codes in Medicare.
DG prevalence in non-COPD (blue) and COPD (red) individuals over
windows of 5-years (e.g. the 75 age denotes the prevalence between
73 and 77 years both included). Prevalence is computed between 0
and 1. For each disease in the left plot the prevalence is depicted
between the maximum 1 and the minimum 0, while in the right plot
the prevalence is zoomed into the ranges of the DG10. (PDF 1767 kb)

Additional file 9: Figure S5. Genes and Pathways relating COPD and
DG8. The figure shows the association between Reactome (a) and
Biocarta (b) pathways for most-associated ICD9 codes included in DG8.
A dark (light) blue square denotes that the association between disease
and pathway or gene was computed as significant when using either
mapping1_DG or mapping2_DG (only mapping1_DG). The description
of the ICD9 codes is provided in panel (c). Additional file 9: Figure S8 extends
the information provided in Fig. 5 and follows the same color-code and
selection criteria. (PDF 1550 kb)

Additional file 10: Figure S6. Ranked based distances between DG
and COPD. Each column denotes the ranking of distances (from 1 to 27,
larger is closer) between each DG and COPD. JC, T and PHI denote
respectively Jaccard-type, Total and phi distance. Genes, KEGG, REAC,
BIOC and GO denote respectively KEGG, Reactome, BioCarta and Gene
Ontology gene sets. EXT denotes distance computed with extended
gene-disease associations by PPI. Φ and RR denote the co-occurrence
based distances. (PDF 293 kb)

Additional file 11: Figure S7. PCA from the data displayed in
Additional file 7: Figure S6. Both panels are showing the same
information with different color-coding to highlight specific results. (a)
Color-code to show the different types of measurements: JC, T, phi or co-
occurrence based measures. (b) Color-coded to show the different
sources of information: genes, gene-sets and co-occurrence based mea-
surements. (PDF 329 kb)

Additional file 12: Figure S8. Ranked based distances between DG
and COPD from Step 2. Ranked based distances between DG and COPD.
Each column denotes the ranking of distances (from 1 to 27, larger is
closer) between each DG and COPD. JC, and PHI denote respectively
Jaccard-type and phi distance. Genes, KEGG, REAC, BIOC and GO denotes re-
spectively KEGG, Reactome, BioCarta and Gene Ontology gene sets. Φ and
RR denote the co-occurrence based distances. (PDF 165 kb)

Additional file 13: Figure S9. PCA from the data displayed in Additional
file 9: Figure S8. Both panels are showing the same information with different
color-coding to highlight specific results. (a) Color-code to show the different
types of measurements: JC, phi or co-occurrence (Φ and RR) based measures.
(b) Color-coded to show the different sources of information: genes, gene-sets
and co-occurrence based measurements. (PDF 191 kb)

Additional file 14: Table S3. Pathway co-morbidity biomarkers for DG_8.
(XLSX 9 kb)

Additional file 15: Tables S4, S5 and S6. Text-mining analysis by
PolySearch. set1 = (“aging”, “age”), set2 = (“smoking”,”smoke”),
set3 = (“training”,”train”,”healthy life style”); the results of the queries are
shown in Additional file 14: Tables S4, S5 and S6 respectively. (ZIP 97 kb)

Additional file 16: Table S7. Data-sets selected to investigate genes in
the context of aging, smoking and life-style. (XLSX 33 kb)

Declarations
This article has been published as part of BMC Bioinformatics Volume 17
Supplement 15, 2016: Proceedings of Statistical Methods for Omics Data
Integration and Analysis 2015. The full contents of the supplement are
available online at http://bmcbioinformatics.biomedcentral.com/articles/
supplements/volume-17-supplement-15.

Funding
Publication of this article has been funded by the Synergy-COPD European
project (FP7-ICT-270086).

Availability of data and materials
All data, except Medicare data-base, is publicly available. Links to the data
sources are available in Additional file 15: Table S7 and Additional file 16:
Table S8. In the case of Medicare, co-morbidity summary values are available
in http://hudine.neu.edu/resource/data/data.html.

Authors’ contributions
DGC and JR defined an initial draft of the analysis and manuscript. DGC, CV, JM
participated in the analysis. DM computed the semantic mapping and provided
feedback during the analysis. DGC, JM, JR, JT and DM reviewed and defined the
final structure. DGC, JT and JR wrote the manuscript. All authors first reviewed
their specific sections in detail, then reviewed the full document, in both cases
they proposed modifications; finally all authors agreed on the final version.

Competing interests
DM is part of Biomax Informatics AG. The authors’ declare that they have no
competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Medicine, Karolinska Institutet, Unit of Computational
Medicine, Stockholm 171 77, Sweden. 2Karolinska Institutet, Center for
Molecular Medicine, Stockholm 171 77, Sweden. 3Department of Medicine,
Unit of Clinical Epidemiology, Karolinska University Hospital, Solna L8, 17176,
Sweden. 4Science for Life Laboratory, Solna 17121, Sweden. 5Center for
Complex Networks Research and Department of Physics, Northeastern
University, Boston, MA, USA. 6Institut d’Investigacions Biomèdiques August Pi
i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, Universitat de Barcelona,
Barcelona, Spain. 7Center for Biomedical Network Research in Respiratory
Diseases (CIBERES), Madrid, Spain. 8Biomax Informatics AG, Planegg, Germany.
9Center for Cancer Systems Biology (CCSB) and Department of Cancer
Biology, Dana-Farber Cancer Institute, Boston, MA, USA. 10Center for Network
Science, Central European University, Budapest, Hungary. 11Channing
Division of Network Medicine, Department of Medicine, Brigham and
Women’s Hospital, Harvard Medical School, Boston, MA, USA. 12Mucosal and
Salivary Biology Division, King’s College London Dental Institute, London, UK.

Published: 22 November 2016

References
1. World Health Organization. Chronic obstructive pulmonary disease (COPD).

Fact sheet No. 315. 2015. http://www.who.int/mediacentre/factsheets/fs315/en/.
Accessed Jan 2016.

2. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global
and regional mortality from 235 causes of death for 20 age groups in 1990
and 2010: A systematic analysis for the Global Burden of Disease Study
2010. Lancet. 2012;380:2095–128.

3. Postma DS, Anzueto AR, Jenkins C, Make BJ, Similowski T, Ostlund O, et al.
Factor analysis in predominantly severe COPD: Identification of disease
heterogeneity by easily measurable characteristics. Respir Med. 2013;107:
1939–47.

4. Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic
obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir
Crit Care Med. 2010;182:598–604.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 15):441 Page 33 of 49

dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
dx.doi.org/10.1186/s12859-016-1291-3
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-15
http://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-17-supplement-15
http://hudine.neu.edu/resource/data/data.html
http://www.who.int/mediacentre/factsheets/fs315/en/


5. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for
the diagnosis, management and prevention of COPD, global initiative for
chronic obstructive lung disease [Internet]. 2015. http://www.goldcopd.it/
materiale/2015/GOLD_Pocket_2015.pdf. Accessed Jan 2016.

6. Faner R, Nuñez B, Sauleda J, Garcia-Aymerich J, Pons J, Crespí C, et al. HLA
Distribution in COPD Patients. COPD J Chronic Obstr Pulm Dis. 2013;10:138–46.

7. Decramer M, Janssens W. Chronic obstructive pulmonary disease and
comorbidities. Lancet Respir Med Elsevier Ltd. 2013;1:73–83.

8. Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary
disease. Lancet. 2012;379:1341–51.

9. Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD.
Eur Respir J. 2009;33:1165–85.

10. Celli BR, Marin JM, Cote CG, Aguirre A. Correspondence Prognostic
assessment of patients with COPD. Lancet. 2009;374:1885–6.

11. Barreiro E, Rabinovich R, Marin-Corral J, Barberà JA, Gea J, Roca J. Chronic
endurance exercise induces quadriceps nitrosative stress in patients with
severe COPD. Thorax. 2009;64:13–9.

12. Rodriguez DA, Kalko S, Puig-Vilanova E, Perez-Olabarría M, Falciani F, Gea J,
et al. Muscle and blood redox status after exercise training in severe COPD
patients. Free Radic Biol Med. 2012;52:88–94.

13. Mathur S, Brooks D, Carvalho CRF. Structural alterations of skeletal muscle in
copd. Front Physiol. 2014;5.

14. Roca J, Cano I, Gomez-cabrero D, Tegnér J. From Systems Understanding
to Personalized Medicine: Lessons and Recommendations Based on a
Multidisciplinary and Translational Analysis of COPD. In: Schmitz U,
Wolkenhauer O, editors. Syst. Med. New York: Springer Science+Business
Media; 2016. p. 283–303.

15. Gomez-Cabrero D, Menche J, Cano I, Abugessaisa I, Huertas-Migueláñez M,
Tenyi A, et al. Systems Medicine: from molecular features and models to the
clinic in COPD. J Transl Med BioMed Central Ltd. 2014;12.

16. Jansson S-A, Backman H, Rönmark E, Lundbäck B, Lindberg A. Hospitalization
Due to Co-Morbid Conditions is the Main Cost Driver Among Subjects With
COPD-A Report From the Population-Based OLIN COPD Study. COPD J
Chronic Obstr Pulm Dis. 2015;12:381–9.

17. Hernandez C, Aibar J, de Batlle J, Gomez-Cabrero D, Soler N, Duran-Tauleria
E, et al. Assessment of health status and program performance in patients
on long-term oxygen therapy. Respir Med. 2015;109:500–9.

18. de Groot DA, de Vries M, Joling KJ, van Campen JPCM, Hugtenburg JG, van
Marum RJ, et al. Specifying ICD9, ICPC and ATC codes for the STOPP/START
criteria: A multidisciplinary consensus panel. Age Ageing. 2014;43(6):773–8.

19. Van Remoortel H, Hornikx M, Langer D, Burtin C, Everaerts S, Verhamme P,
et al. Risk factors and comorbidities in the preclinical stages of chronic
obstructive pulmonary disease. Am J Respir Crit Care Med. 2014;189:30–8.

20. Burgel P-R, Clini EM. Multimorbidity in elderly patients with chronic
obstructive pulmonary disease: stop smoking! Go exercise? Am J Respir Crit
Care Med. 2014;189:7–8.

21. Jensen AB, Moseley PL, Oprea TI, Ellesøe SG, Eriksson R, Schmock H, et al.
Temporal disease trajectories condensed from population-wide registry data
covering 6.2 million patients. Nat Commun. 2014;5:4022.

22. Capobianco E, Lio’ P. Comorbidity: A multidimensional approach. Trends
Mol. Med. Elsevier Ltd. 2013;19:515–21.

23. Vestbo J, Hurd SS, Rodriguez-Roisin R. The 2011 revision of the global
strategy for the diagnosis, management and prevention of COPD (GOLD)–
why and what? Clin Respir J. 2012;6:208–14.

24. Lococo F, Cesario A, Bufalo A Del, Ciarrocchi A, Prinzi G, Mina M, et al. Novel
Therapeutic Strategy in the Management of COPD : A Systems Medicine
Approach. 2015. p. 3655–75

25. Hidalgo CA, Blumm N, Barabási A-L, Christakis NA. A dynamic network
approach for the study of human phenotypes. PLoS Comput Biol. 2009;5.

26. Cano I, Tényi A, Schueller C, Wolff M, Huertas Migueláñez MM, Gomez-Cabrero D,
et al. The COPD Knowledge Base: enabling data analysis and computational
simulation in translational COPD research. J Transl Med. 2014;12.

27. Maglott D. Entrez Gene: gene-centered information at NCBI. Nucleic Acids
Res. 2004;33:54–8.

28. Goh K, Cusick ME, Valle D, Childs B, Vidal M. The human disease network.
PNAS. 2007;104:8685–90.

29. Menche J, Sharma A, Kitsak M, Ghiassian S, Vidal M, Loscalzo J, et al.
Uncovering disease-disease relationships through the human interactome.
Science. 2015;20:347.

30. Park J, Lee D-S, Christakis NA, Barabási A-L, Data S. The impact of cellular
networks on disease comorbidity. Mol. Syst. Biol. 2009;5:262.

31. Moni MA, Liò P. How to build personalized multi-omics comorbidity
profiles. Front Cell Dev Biol. 2015;3.

32. Moni MA, Liò P. comoR: a software for disease comorbidity risk assessment.
J Clin Bioinforma. 2014;4:8.

33. Murtagh F. Multidimensional clustering algorithms. In: Chambers JM,
Gordesch J, Klas A, Lebart L, Sint PP, editors. COMPSTAT Lect. 4. Lect.
Comput. Stat. Viena-Wurzburg: Physica-Verlag; 1985.

34. Davis AP, Murphy CG, Johnson R, Lay JM, Lennon-Hopkins K, Saraceni-
Richards C, et al. The Comparative Toxicogenomics Database: update 2013.
Nucleic Acids Res. 2013;41:D1104–14.

35. Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, et al.
Phenotype-Genotype Integrator (PheGenI): synthesizing genome-wide
association study (GWAS) data with existing genomic resources.
Eur. J Hum Genet. 2014;22:144–7.

36. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. Online
Mendelian Inheritance in Man (OMIM), an Online catalog of human genes
and genetic disorders. Nucleic Acids Res. 2015;43:D789–98.

37. Suh KS, Park SW, Castro A, Patel H, Blake P, Liang M, et al. Ovarian cancer
biomarkers for molecular biosensors and translational medicine. Expert Rev
Mol Diagn. 2010;10:1069–83.

38. Maier D, Kalus W, Wolff M, Kalko SG, Roca J, Marin de Mas I, et al.
Knowledge management for Systems Biology a general and visually driven
framework applied to translational medicine. BMC Syst Biol. 2011;5:38.

39. Cobb WS, Peindl RM, Zerey M, Carbonell AM, Heniford BT. Mesh
terminology 101. Hernia. 2009;13:1–6.

40. Slee V. The International Classification of Diseases: Ninth Revision (ICD-9) IN.
Ann iInternal Med. 1978;88:424–6.

41. The international conference for the tenth revision of the International
Classification of Diseases. Strengthening of Epidemiological and Statistical
Services Unit. World Health Organization, Geneva. World Heal Stat Q. 1990;
43:204–45.

42. Hartel FW, De Coronado S, Dionne R, Fragoso G, Golbeck J. Modeling a
description logic vocabulary for cancer research. J Biomed Inform. 2005;38:
114–29.

43. Wang AY, Barrett JW, Bentley T, Markwell D, Price C, Spackman KA, et al.
Mapping between SNOMED RT and Clinical terms version 3: a key
component of the SNOMED CT development process. Proc. AMIA Symp.
2001. p. 741–5.

44. Bodenreider O, Burgun A, Botti G, Fieschi M, Le Beux P, Kohler F. Evaluation
of the Unified Medical Language System as a Medical Knowledge Source.
J Am Med Informatics Assoc. 1998;5:76–87.

45. Husson F, Le S, Pages J. Exploratory Multivariate Analysis by Example Using
R. London: CRC Press. Chapman and Hall; 2010.

46. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL. Gene set
enrichment analysis : A knowledge-based approach for interpreting
genome-wide. PNAS. 2005;102:15545–50.

47. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
Ontology : tool for the unification of biology. Nat Genet. 2000;25:25–9.

48. Rivals I, Personnaz L, Taing L, Potier M-C. Enrichment or depletion of a
GO category within a class of genes: which test? Bioinformatics. 2007;
23:401–7.

49. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate : A Practical
and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57:289–300.

50. Cheng D, Knox C, Young N, Stothard P, Damaraju S, Wishart D. PolySearch: a
web-based text mining system for extracting relationships between human
diseases, genes, mutations, drugs and metabolites. Nucleic Acids Res. 2008;
36:399–405.

51. Liu Y, Liang Y, Wishart D. PolySearch2: a significantly improved text-mining
system for discovering associations between human diseases, genes, drugs,
metabolites, toxins and more. Nucleic Acids Res. 2015;1:535–42.

52. Mullen MT, Moomaw CJ, Alwell K, Khoury JC, Kissela BM, Woo D, et al. ICD9
codes cannot reliably identify hemorrhagic transformation of ischemic
stroke. Circ Cardiovasc Qual Outcomes. 2013;6:505–6.

53. Payne TH, Murphy GR, Salazar AA. How well does ICD9 represent phrases
used in the medical record problem list? Proc Annu Symp Comput Appl
Med Care. 1992;654–7.

54. Kannan V, Swartz F, Kiani NA, Silberberg G, Tsipras G, Gomez-Cabrero D, et
al. Conditional Disease Development extracted from Longitudinal Health
Care Cohort Data using Layered Network Construction. Sci Rep. 2016;6.

55. Katz D, Baptista J, Azen SP, Pike MC. Obtaining Confidence Intervals for the
Risk Ratio in Cohort Studies. Biometrics. 1978;34:469–74.

The Author(s) BMC Bioinformatics 2016, 17(Suppl 15):441 Page 34 of 49

http://www.goldcopd.it/materiale/2015/GOLD_Pocket_2015.pdf
http://www.goldcopd.it/materiale/2015/GOLD_Pocket_2015.pdf


56. Cohen J, Cohen P, West SG, Aiken LS. Applied Multiple Regression/
Correlation Analysis for the Behavioral Sciences. New Jersey: Lawrence
Erlbaum Associates; 2002.

57. Blake JA, Christie KR, Dolan ME, Drabkin HJ, Hill DP, Ni L, et al. Gene
ontology consortium: Going forward. Nucleic Acids Res. 2015;43:D1049–56.

58. Rolland T, Taşan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N, et al.
A Proteome-Scale Map of the Human Interactome Network. Cell. 2014;
159:1212–26.

59. Yang H, Long F, Zhang Y, Yu R, Zhang P, Li W, et al. 1a,25-dihydroxyvitamin
D3 induces neutrophil apoptosis through the p38 MAPK signaling pathway
in chronic obstructive pulmonary disease patients. PLoS One. 2015;10:1–10.

60. Betts JC, Mayer RJ, Tal-Singer R, Warnock L, Clayton C, Bates S, et al. Gene
expression changes caused by the p38 MAPK inhibitor dilmapimod in
COPD patients: analysis of blood and sputum samples from a randomized,
placebo-controlled clinical trial. Pharmacol Res Perspect. 2015;3, e00094.

61. Watz H, Barnacle H, Hartley BF, Chan R. Efficacy and safety of the p38 MAPK
inhibitor losmapimod for patients with chronic obstructive pulmonary
disease: A randomised, double-blind, placebo-controlled trial. Lancet Respir
Med. 2014;2:63–72.

62. Cepek P, Zajacova M, Kotrbova-Kozak A, Silhova E, Cerna M. DNA methylation
and mRNA expression of HLA-DQA1 alleles in type 1 diabetes mellitus.
Immunology. 2016;2:150–9.

63. Megiorni F, Pizzuti A. HLA-DQA1 and HLA-DQB1 in Celiac disease predisposition:
practical implications of the HLA molecular typing. J Biomed Sci. 2012;19.

64. Hinks A, Cobb J, Marion MC, Prahalad S, Sudman M, Bowes J, et al. Dense
genotyping of immune-related disease regions identifies 14 new
susceptibility loci for juvenile idiopathic arthritis. Nat Genet. 2013;45:664–9.

65. Patel AR, Kowlessar BS, Donaldson GC, Mackay AJ, Singh R, George SN, et al.
Cardiovascular Risk, Myocardial Injury and Exacerbations of Chronic
Obstructive Pulmonary Disease. Am J Respir Crit Care Med. 2013;188:1091–9.

66. Zi Z, Chapnick DA, Liu X. Dynamics of TGF-b/Smad signaling. FEBS Lett.
2012;586:1921–8.

67. Harmston N, Filsell W, Stumpf MPH. What the papers say: text mining for
genomics and systems biology. Hum Genomics. 2010;5:17–29.

68. Burge AT, Lee AL, Kein C, Button BM, Sherburn MS, Miller B, et al. Prevalence
and impact of urinary incontinence in men with chronic obstructive
pulmonary disease: a questionnaire survey. Physiotherapy. 2016.

69. Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev
Cancer. 2013;13:233–45.

70. Caruso G, Catalano D, Scalisi N, Terranova S, Virgilio C, Mazzone O. Association
of chronic obstructive bronchitis and upper digestive pathology. A clinical
study. Recent. Prog Med. 1991;82:585–7.

71. Hansell AL, Lam KA, Richardson S, Visick G, Soriano JB. Medical event
profiling of COPD patients. Pharmacoepidemiol Drug Saf. 2004;13:547–55.

72. Keely S, Hansbro PM. A Potential Mechanism for Intestinal Dysfunction in
Patients With COPD. Chest. 2014;46:65–9.

73. Ekbom, A., Brandt, L., Granath, F., Löfdahl, C.-G., Egesten, A., 2008. Increased
Risk of Both Ulcerative Colitis and Crohn’s Disease in a Population Suffering
from COPD. Lung 186, 167–172. doi:10.1007/s00408-008-9080-z.

74. García-Olmos L, Alberquilla A, Ayala V, García-Sagredo P, Morales L,
Carmona M, et al. Comorbidity in patients with chronic obstructive
pulmonary disease in family practice: a cross sectional study. BMC Fam
Pract. 2013;14.

75. Dal Negro RW, Bonadiman L, Turco P. Prevalence of different comorbidities
in COPD patients by gender and GOLD stage. Multidiscip Respir Med. 2015;10.

76. Negewo NEA, Gibson PEG, Mcdonald VAM. COPD and its comorbidities :
Impact, measurement and mechanisms. Respirology. 2015;20:1160–71.

77. Vogelmeier C, Vestbo J. COPD assessment: I, II, III, IV and/or A, B, C. D Eur
Respir J. 2014;43:949–50.

78. Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis:
A comprehensive review. J Autoimmun Elsevier Ltd. 2015;64:1–13.

79. Lerner A, Matthias T. Rheumatoid arthritis–celiac disease relationship: Joints
get that gut feeling. Autoimmun Rev Elsevier BV. 2015;14:1038–47.

80. Marchesi M, Andersson E, Villabona L, Seliger B, Lundqvist A, Kiessling R, et
al. HLA-dependent tumour development: a role for tumour associate
macrophages? J Transl Med. 2013;11.

81. Snir O, Gomez-Cabrero D, Montes A, Perez-Pampin E, Gómez-Reino JJ,
Seddighzadeh M, et al. Non-HLA genes PTPN22, CDK6 and PADI4 are
associated with specific autoantibodies in HLA-defined subgroups of
rheumatoid arthritis. Arthritis Res Ther. 2014;16:414.

82. Smith NLD, Hankinson J, Simpson A, Bowyer P, Denning DW. A prominent
role for the IL1 pathway and IL15 in susceptibility to chronic cavitary
pulmonary aspergillosis. Clin Microbiol Infect. 2014;20:480–8.

83. Zdrenghea MT, Mallia P, Johnston SL. Immunological pathways in virus-
induced COPD exacerbations: a role for IL-15. Eur J Clin Invest. 2012;42:1010–5.

84. Freeman CM, Han MK, Martinez FJ, Murray S, Liu LX, Chensue SW, et al.
Cytotoxic potential of lung CD8(+) T cells increases with chronic obstructive
pulmonary disease severity and with in vitro stimulation by IL-18 or IL-15.
J Immunol. 2010;184:6504–13.

85. Vanfleteren LEGW, Spruit MA, Groenen M, Gaffron S, Van Empel VPM,
Bruijnzeel PLB, et al. Clusters of comorbidities based on validated objective
measurements and systemic inflammation in patients with chronic
obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187:728–35.

86. Eagan TML, Gabazza EC, D’Alessandro-Gabazza C, Gil-Bernabe P, Aoki S,
Hardie JA, et al. TNF-α is associated with loss of lean body mass only in
already cachectic COPD patients. Respir Res. 2012;13:48.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

The Author(s) BMC Bioinformatics 2016, 17(Suppl 15):441 Page 35 of 49

http://dx.doi.org/10.1007/s00408-008-9080-z

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Estimation of ϕ and Relative Risk (RR)
	Hierarchical clustering of COPD-associated diseases
	Gene disease map
	PCA analysis
	Ranking disease groups
	Ranking genes and pathways
	Rank combination
	Significance computed for genes and pathways
	Overrepresentation analysis in gene-sets
	Text-mining

	Results and Discussion
	Co-occurrence based on COPD co-morbidity analysis
	Disease group associations with COPD
	Changes over age of disease risk association

	Shared mechanisms in COPD co-morbidity
	Integration-based disease-gene maps
	ICD9 and disease group (DG) distances to COPD
	Principal candidate markers of disease co-morbidity: genes and pathways


	Conclusions
	Additional files
	Declarations
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

