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Weighted Evolving Networks
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Many biological, ecological, and economic systems are best described by weighted networks, as the
nodes interact with each other with varying strength. However, most evolving network models studied
so far are binary, the link strength being either 0 or 1. In this paper we introduce and investigate the
scaling properties of a class of models which assign weights to the links as the network evolves. The
combined numerical and analytical approach indicates that asymptotically the total weight distribution
converges to the scaling behavior of the connectivity distribution, but this convergence is hampered by
strong logarithmic corrections.
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The recognition that real networks are fundamentally
different from the random models that dominated the
mathematical literature in the past 40 years [1,2] leads to a
surge of activity in addressing the statistical properties of
these systems [3–10]. In one aspect most recently devel-
oped models, aimed to describe the large-scale topology
of complex networks, are incomplete when compared with
real systems: they assume that all links are equivalent. But
in many fields it is well known that the interaction strengths
can vary widely, such variations being essential to the net-
work’s ability to carry on its basic functions. Sociologists
have repeatedly argued about the importance of assigning
strengths to social links, finding that the weak links
people have outside their close circle of friends play a key
role in keeping the social system together [11]. Recently,
Newman has showed that assigning weights to the links
between scientists allows for a better characterization of
the scientific collaboration web [12]. Similarly, there
is an ongoing discussion about the importance of weak
links between species in guaranteeing the stability of an
ecosystem [13]. Finally, many transportation networks
in nature, ranging from cardiovascular to respiratory
networks, have well defined weights or flow rates assigned
to the links, whose magnitude is intimately determined by
the network’s topology [14]. The issue of link strength
has been extensively addressed in the neural network
literature. The question posed in that context so far had
a unique focus: given a network topology, how can one
alter the link weights in a dynamical fashion to allow
the network to perform certain desired functions, ranging
from memory to pattern recognition [15]? Similarly,
research on allometric scaling has also been concerned
with assigning weights to links on a network with fixed,
often treelike topology [14]. On the other hand, the recent
advances in statistical modeling of complex networks
have brought the community’s attention towards large
networks whose topology evolves in time. Despite the
known importance of interaction strengths in the various
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systems these models aim to describe, in this context
there have been no attempts to model networks other than
binary nets, whose links have weights 0 or 1.

In this paper we take a first step in the direction of a
systematic study of evolving networks with nonbinary con-
nectivities. We introduce and investigate two models that
assign weights to new links as they are dynamically cre-
ated, providing a prototype of a weighted evolving net-
work. While we choose the simplest possible models, in
which the weights are driven by the network connectiv-
ity only, numerical simulations indicate that the distribu-
tion of the total weight scales differently from the total
connectivity. However, an analytical solution reveals that
the different scaling behavior can be explained by strong
logarithmic correction, and asymptotically the investigated
weighted networks belong to the same universality class as
their unweighted counterparts.

Weighted scale-free (WSF) model.—Starting from a
small number (m0� of vertices, at each time step we add a
new node which links to m existing nodes in the system.
The probability that a new node j will connect to an
existing node i is

Pi �
kiP
j kj

, (1)

where ki is the total number of links that the node i has.
In assigning a weight to the newly established link j $ i,
we assume that the weight wji �� wij� is proportional to
ki , i.e., more connected (and therefore more “powerful”)
nodes gain more weight. Also, one can assume that all
new nodes have fairly uniform total “resources” for linking
to other nodes in the system. We therefore require that
each new node has a fixed total weight; i.e., we normalize
wij such that the sum of the weights for the m new links
is

P
�i0� wji0 � 1, where �i0� represents a sum over the m

existing nodes to which the new node j is connected. As
a result of the two assumptions, each link i $ j of the
newly added node j is assigned a weight as
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wji �
kiP

�i0� ki0
. (2)

Weighted exponential (WE) model.—The model is in-
spired by model A discussed in Refs. [16,17], and is de-
fined as follows: at every time step we add a new node
with m �# m0� links, connected with equal probability to
the nodes present in the system. The weights of the links
are assigned again by using (2).

The difference between the WSF and WE models comes
in preferential attachment, which is known to fundamen-
tally alter the topology [7–9,16–18]: The WSF model
generates a scale-free network whose connectivity distri-
bution follows P�k� � k23, while the network generated
by the WE model is exponential with the connectivity dis-
tribution following P�k� �

e
m e2k�m. Since the weights of

the links are driven by the connectivity, this difference is
expected to lead to significant changes in the distribution
of the link strengths as well.

We start by investigating the weight distribution of the
two models. As Figs. 1(a) and 1(b) show, both the WE
and the WSF models lead to a peaked and skewed weight
distribution, whose tails decay exponentially (or faster)
for large wij . The boundedness of P�wij� is due to the
normalization condition, which does not allow individual
weights to be larger than 1. Most important, however,
we find that the distribution is stationary; i.e., P�wij� is
independent of time (and system size).

While the individual weights assigned to links, wij , are
bounded, we get a very different picture when we study
the total weight associated with a selected node. In binary
networks the node’s importance is characterized by the
total number of links it has, ki . Similarly, in a weighted
network the importance of a node i can be measured by
its total weight, obtained by summing the weights of the
links that connect to it, wi �

P
� j� wij .
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FIG. 1. The distribution P�wij� of the individual link weights,
wij , for the (a) WE and the (b) WSF models, defined in the text
(m � 2). The symbols correspond to different system sizes (or
time), i.e., N � 103 (�), 104 (�), 105 (}), and 106 (�). The
insets shows the same data on a log-linear plot, indicating that
the tail decays faster than exponential.
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Because of the normalization condition (2) a new node
has wi � 1, but wi increases in time every time when sub-
sequently added nodes link to i. Since in both models the
weights are determined by the network connectivity, we
expect that P�w� closely follows P�k�. In contrast, the
numerical results summarized in Fig. 2 indicate striking
differences between P�k� and P�w�. As Fig. 2(a) shows,
while for the WE model P�k� decays exponentially, P�w�
systematically deviates from a simple exponential behav-
ior. This difference is even more evident in the network
dynamics: while both ki�t� and wi�t� appear to increase
logarithmically in time, they can be fitted with a different
slope on a log-linear plot [Fig. 2(b)]. Similar systematic
discrepancies are observed for the WSF model as well:
as Fig. 2c indicates, while P�w� and P�k� can be fitted
with power laws, P�w� � w2s and P�k� � k2g , it ap-
pears that g � 3 and the exponent s is different from
g. Furthermore, we find that s depends strongly on m
[Fig. 2(c)]. Again, this difference is reflected in the dy-
namical behavior of ki�t� and wi�t�: as Fig. 2(d) indicates,
wi�t� � tb with b . 1�2, in contrast with ki�t� � t1�2

[6,17] predicted by the binary scale-free model.
To understand the different behaviors of wi and ki un-

covered by the numerical simulations, we resort to the ana-
lytical method in determining the averaged behavior of
wi�t� for the discussed model. To simplify the discussion
in the following we assume m � 2; however, the calcula-
tions can be generalized for arbitrary m. The total weight
of node i at time t can be written as
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FIG. 2. (a) Distribution P�w� of the total connectivity w as-
signed to individual nodes for the WE model. The symbols cor-
respond to different values of m, i.e., m � 2 (�), 3 (�), 4 (}),
and 5 (�). The inset shows the connectivity distribution, P�k�,
for the same parameters as in the main panel. (b) Time depen-
dence of ki�t� (�) and wi�t� (�) for a randomly selected node
i for the WE model (i � 5000). (c) P�k� (�) and P�w� (�)
distributions for the WSF model for m � 5. The inset shows
the same data for m � 2. (d) ki�t� (�), wi�t� (�) vs t for the
WSF model (i � 10 000).
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wi�t� � 1 1
X
� j�

wij � 1 1
Z t

t0
i

P̃i�t0� �wij�t0�� dt0, (3)

where P̃i�t� is the probability that node i is selected to be
connected to a new node j at time t and t0

i is the time at
which the node i has been added to the system. �wij� is the
average weight of link i $ j once the link is established.
When a new node j and the list of m nodes �i0� to which
it connects are selected, the weights of the links, wji0 , are
assigned according to (2). These weights depend on the
number of links the selected nodes have, i.e., �ki0�. If we
assume that node j is connected to nodes i and l �m � 2�,
we have

�wij�t�� �
Z `

m
wji�l�P �kl� dkl , (4)

where wji�l� is the weight between the j and i nodes,
P �kl� is the probability distribution of kl , the total link
number of node l. Substituting (4) into (3), we obtain

wi�t� � 1 1
Z t

t0
i

Z `

m
P̃i�t0�wji�l�P �kl� dkl dt0. (5)

According to (2) for m � 2, the weight wji�l� is given
by

wji�l� �
ki

ki 1 kl
, (6)

thus Eq. (5) becomes

wi�t� � 1 1
Z t

t0
i

Z `

m
P̃i�t0�

ki

ki 1 kl
P �kl� dkl dt0. (7)

Equation (7) represents a general expression for calcu-
lating wi�t� for m � 2. To apply it to the WE and WSF
models, we need to calculate explicitly P̃�t� and P �kl�.

WE model.— In the WE model the nodes to which a new
node connects are selected uniformly among all existing
nodes, thus the probability that node i will be picked is
independent of this node’s connectivity and is given by

P̃i�t� �
m

t 1 m0
. (8)

Similarly, the connectivity distribution and the dynamical
behavior of a single node are given by [17]

P �k� � Ae2k�m �
e
m

e2k�m,

ki�t� � m	ln�m0 1 t 2 1� 2 ln�m0 1 t0
i 2 1� 1 1


� m	ln�at 1 b� 1 1
 , (9)

where a � 1��m0 1 t0
i 2 1�, b � �m0 2 1���m0 1

t0
i 2 1�, and the normalization condition is 1 �R`

m P �k� dk.
Substituting (9) into (7), we obtain

wi�t� � 1 1 e
Z t

t0
i

Z `

m

1
t0 1 m0

ki�t0�
ki�t0� 1 kl

e2kl�m dkl dt0.

After performing the integration and inserting ki�t� from
(9), for large t we obtain
wi�t� � m ln�at 1 b� 2 m ln	ln�at 1 b� 1 2
 1 C ,

(10)

where C is an integration constant independent of t. There-
fore the relation between wi�t� and ki�t� for large t follows:

wi�t� � ki�t� 2 m ln lnt 1 C . (11)

The prediction (11) is fully supported by numerical simu-
lations: in Fig. 3(a) we plot the difference wi�t� 2 ki�t�
as a function of ln ln�t�, showing that the difference indeed
follows a double logarithmic law. This result is very inter-
esting since it indicates that the different slopes observed
in Fig. 2(b) for ki�t� and wi�t� do not represent distinct
power law scaling behaviors, but are the result of logarith-
mic corrections.

WSF model.— In the scale-free model the probability
distributions and ki�t� are given by [17]

P̃i�t� � m
ki�t�Pt

j kj
� m

ki�t�
2mt

�
ki�t�
2t

,

P �k� � mk22 	~ k ? P�k�
 , (12)

ki�t� �
mq
t0
i

p
t .

Substituting (12) into (7), and performing the integrals we
obtain

wi�t� � ki�t� 2
m
8

µ
ln

m2t

t0
i

∂2

1
m
2

ln�m� ln

µ
t

t0
i

∂
1 C0,

(13)

indicating that despite a different scaling behavior sug-
gested by the numerical simulations [Fig. 2(d)], we are
dealing with strong logarithmic corrections and asymptoti-
cally two scaling laws are the same. Again, the analytical
prediction (13) is confirmed by more detailed numerical
simulations shown in Fig. 3(b).

Our ability to calculate analytically wij for the discussed
models is based on the fact that the weights are driven by
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FIG. 3. The difference [wi�t� 2 ki�t�] for the (a) WE and the
(b) WSF models. The continuous lines in each case represent
the analytic solutions (11) and (13), respectively. We limited the
simulations to nodes appearing at large t0

i �t0
i � 104� to capture

the asymptotic limit that is predicted by our predictions (11)
and (13). We find that for smaller t0

i the crossover time for the
convergence to the analytic solution is numerically prohibited.
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the connectivity distribution. To address the generality of
our results we investigated several extensions of these two
models that we discuss in the following.

Weight driven weight.— In general, one could expect
that in some systems the quantity determining the weight
is not the connectivity, but are the weights themselves. To
investigate this possibility we replaced (2) with

wji �
wiP
i0 wi0

; (14)

i.e., the weight of the newly added links are determined
by the total weight of the nodes. While we cannot solve
this model analytically, the numerical results are similar to
those observed for the WE and WSF models: an apparently
different scaling behavior for k and w can be attributed to
slow corrections to scaling.

Weight driven connectivity.— In some systems the topol-
ogy could be driven by the total weights, and not by the
connectivity. Thus we assume that the probability (1) that
a new node is connected to a node j is

Pi �
wiP
j wj

, (15)

where wi is the weight of node i. The weights are then
assigned following (2). We find that the scaling of this
network is identical to that of the scale-free model, and
the evolution of the weights also follows the paradigm
established for the WSF model.

Discussion.—Extensive simulations of networks whose
size is comparable to the real networks that are currently
available indicate the emergence of new scaling exponents
for the behavior of the total weights. However, the analyti-
cal solutions reveal that the results are affected by strong
logarithmic corrections, and asymptotically the scaling be-
haviors of the weighted and unweighted models are iden-
tical. This result raises important questions regarding
our ability to uncover the correct scaling behavior of real
weighted networks, should such data become available in
the near future: the real exponents could be easily shad-
owed by corrections to scaling similar to that encountered
in the investigated models here.

The results presented in this paper represent only the
starting point towards understanding weighted networks.
In some real systems, diverse dynamical rules can gov-
ern the assignment of weights to links, which could
result in statistical properties of the network that are dif-
5838
ferent from that discussed here. In particular, we assumed
that once a weight has been assigned to a link, it stays
unchanged, which is often not the case in more realistic
networks: weights can evolve dynamically just as the
network topology does. For example, acquaintance can
turn into friendship by strengthening a previously weak
link. Determining the generic behavior of such complex
evolving systems is a real challenge for future research.
Despite these limitations, the investigated models give
a glimpse into the complex behavior we are facing as
we attempt to make network modeling more realistic by
incorporating weights.
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