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BACKGROUND: The increasing availability of
digital data on scholarly inputs andoutputs—from
research funding, productivity, and collaboration
to paper citations and scientistmobility—offers
unprecedentedopportunities to explore the struc-
ture and evolution of science. The science of
science (SciSci) offers aquantitativeunderstanding
of the interactions among scientific agents across
diverse geographic and temporal scales: It provides
insights into the conditions underlying creativity
and the genesis of scientific discovery, with the
ultimate goal of developing tools and policies
that have the potential to accelerate science. In
the past decade, SciSci has benefited from an in-
flux of natural, computational, and social scien-
tists who together have developedbig data–based
capabilities for empirical analysis and generative
modeling that capture the unfolding of science,
its institutions, and itsworkforce. The value prop-
osition of SciSci is thatwith a deeper understand-
ing of the factors that drive successful science, we
can more effectively address environmental, soci-
etal, and technological problems.

ADVANCES: Science can be described as a com-
plex, self-organizing, and evolving network of
scholars, projects, papers, and ideas. This rep-
resentation has unveiled patterns characterizing
the emergence of new scientific fields through
the study of collaboration networks and the path
of impactful discoveries through the study of
citationnetworks.Microscopicmodels have traced
the dynamics of citation accumulation, allowing
us to predict the future impact of individual
papers. SciSci has revealed choices and trade-offs
that scientists face as they advance both their own
careers and the scientific horizon. For example,mea-
surements indicate that scholars are risk-averse,
preferring to study topics related to their current
expertise, which constrains the potential of future
discoveries. Those willing to break this pattern
engage in riskier careers but becomemore likely to
make major breakthroughs. Overall, the highest-
impact science is grounded in conventional combi-
nations of prior work but features unusual
combinations. Last, as the locus of research is
shifting into teams,SciSci is increasingly focusedon

the impactof teamresearch, finding that small teams
tend to disrupt science and technology with new
ideas drawing on older and less prevalent ones. In
contrast, large teamstendtodeveloprecent,popular
ideas, obtaining high, but often short-lived, impact.

OUTLOOK: SciSci offers a deep quantitative
understanding of the relational structure between
scientists, institutions, and ideas because it facil-
itates the identification of fundamental mecha-
nisms responsible for scientific discovery. These
interdisciplinary data-driven efforts complement
contributions from related fields such as sciento-
metrics and the economics and sociology of

science. Although SciSci
seeks long-standinguniver-
sal laws and mechanisms
that apply across various
fields of science, a funda-
mental challenge going
forward is accounting for

undeniable differences in culture, habits, and
preferences between different fields and coun-
tries. This variation makes some cross-domain
insights difficult to appreciate and associated
sciencepoliciesdifficult to implement. Thediffer-
encesamong thequestions, data, andskills specif-
ic to eachdiscipline suggest that further insights
canbegained fromdomain-specificSciSci studies,
whichmodel and identify opportunities adapted
to the needs of individual research fields.▪
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The complexity of science. Science
can be seen as an expanding and
evolving network of ideas, scholars,
and papers. SciSci searches for
universal and domain-specific laws
underlying the structure and dynamics
of science.
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Identifying fundamental drivers of science and developing predictive models to capture its
evolution are instrumental for the design of policies that can improve the scientific enterprise—
for example, through enhanced career paths for scientists, better performance evaluation for
organizations hosting research, discovery of novel effective funding vehicles, and even
identification of promising regions along the scientific frontier.The science of science uses
large-scale data on the production of science to search for universal and domain-specific
patterns. Here, we review recent developments in this transdisciplinary field.

T
he deluge of digital data on scholarly out-
put offers unprecedented opportunities to
explore patterns characterizing the struc-
ture and evolution of science. The science
of science (SciSci) places the practice of

science itself under the microscope, leading to
a quantitative understanding of the genesis of
scientific discovery, creativity, and practice and
developing tools and policies aimed at accelerat-
ing scientific progress.
The emergence of SciSci has been driven by

two key factors. The first is data availability. In
addition to the proprietaryWeb of Science (WoS),
the historic first citation index (1), multiple data
sources are available today (Scopus, PubMed,
Google Scholar, Microsoft Academic, the U.S.
Patent and Trademark Office, and others). Some
of these sources are freely accessible, covering

millions of data points pertaining to scientists
and their output and capturing research from all
over the world and all branches of science. Sec-
ond, SciSci has benefited from an influx of and
collaborations among natural, computational,
and social scientists who have developed big
data–based capabilities and enabled critical
tests of generative models that aim to capture
the unfolding of science, its institutions, and
its workforce.
One distinctive characteristic of this emerging

field is how it breaks down disciplinary bounda-
ries. SciSci integrates findings and theories from
multiple disciplines and uses a wide range of
data and methods. From scientometrics, it takes
the idea of measuring science from large-scale
data sources; from the sociology of science, it
adopts theoretical concepts and social processes;

and from innovation studies, it explores and
identifies pathways through which science con-
tributes to invention and economic change.
SciSci relies on a broad collection of quantitative
methods, from descriptive statistics and data
visualization to advanced econometric methods,
network science approaches, machine-learning
algorithms, mathematical analysis, and compu-
ter simulation, including agent-based modeling.
The value proposition of SciSci hinges on the
hypothesis that with a deeper understanding of
the factors behind successful science, we can en-
hance the prospects of science as awhole tomore
effectively address societal problems.

Networks of scientists, institutions,
and ideas

Contemporary science is a dynamical system of
undertakings driven by complex interactions
among social structures, knowledge representa-
tions, and the natural world. Scientific knowledge
is constituted by concepts and relations embodied
in research papers, books, patents, software, and
other scholarly artifacts, organized into scientific
disciplines and broader fields. These social, con-
ceptual, and material elements are connected
through formal and informal flows of informa-
tion, ideas, research practices, tools, and samples.
Science can thus be described as a complex, self-
organizing, and constantly evolving multiscale
network.
Early studies discovered an exponential growth

in the volume of scientific literature (2), a trend
that continues with an average doubling period
of 15 years (Fig. 1). Yet, it would be naïve to
equate the growth of the scientific literature with
the growth of scientific ideas. Changes in the
publishing world, both technological and eco-
nomic, have led to increasing efficiency in the
production of publications. Moreover, new pub-
lications in science tend to cluster in discrete
areas of knowledge (3). Large-scale text analysis,
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Fig. 1. Growth of science. (A) Annual production of scientific articles indexed in the WoS database. (B) Growth of ideas covered by articles indexed in the
WoS. This was determined by counting unique title phrases (concepts) in a fixed number of articles (4).
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using phrases extracted from titles and abstracts
to measure the cognitive extent of the scientific
literature, have found that the conceptual territory
of science expands linearly with time. In other
words, whereas the number of publications grows
exponentially, the space of ideas expands only
linearly (Fig. 1) (4).
Frequently occurring words and phrases in

article titles and abstracts propagate via citation
networks, punctuated by bursts corresponding
to the emergence of new paradigms (5). By
applying network science methods to citation
networks, researchers are able to identify com-
munities as defined by subsets of publications
that frequently cite one another (6). These com-
munities often correspond to groups of authors
holding a common position regarding specific
issues (7) or working on the same specialized
subtopics (8). Recentwork focusing onbiomedical
science has illustrated how the growth of the
literature reinforces these communities (9). As
new papers are published, associations (hyper-
edges) between scientists, chemicals, diseases,
and methods (“things,” which are the nodes of
the network) are added. Most new links fall be-
tween things only one or two steps away from
each other, implying that when scientists choose
new topics, they prefer things directly related
to their current expertise or that of their col-
laborators. This densification suggests that the
existing structure of science may constrain what
will be studied in the future.
Densification at the boundaries of science is

also a signal of transdisciplinary exploration,
fusion, and innovation. A life-cycle analysis of
eight fields (10) shows that successful fields
undergo a process of knowledge and social uni-
fication that leads to a giant connected component
in the collaboration network, corresponding to
a sizeable group of regular coauthors. A model
in which scientists choose their collaborators
through random walks on the coauthorship net-
work successfully reproduces author productivity,
the number of authors per discipline, and the
interdisciplinarity of papers and authors (11).

Problem selection

How do scientists decide which research prob-
lems to work on? Sociologists of science have
long hypothesized that these choices are shaped
by an ongoing tension between productive tradi-
tion and risky innovation (12, 13). Scientists who
adhere to a research tradition in their domain
often appear productive by publishing a steady
stream of contributions that advance a focused
research agenda. But a focused agendamay limit
a researcher’s ability to sense and seize oppor-
tunities for staking out new ideas that are re-
quired to grow the field’s knowledge. For example,
a case study focusing on biomedical scientists
choosing novel chemicals and chemical relation-
ships shows that as fields mature, researchers
tend to focus increasingly on established knowl-
edge (3). Although an innovative publication tends
to result in higher impact than a conservative one,
high-risk innovation strategies are rare, because
the additional reward does not compensate for

the risk of failure to publish at all. Scientific
awards and accolades appear to function as
primary incentives to resist conservative tend-
encies and encourage betting on exploration
and surprise (3). Despite themany factors shaping
what scientists work on next, macroscopic pat-
terns that govern changes in research interests
along scientific careers are highly reproducible,
documenting a high degree of regularity under-
lying scientific research and individual careers (14).
Scientists’ choice of research problems affects

primarily their individual careers and the careers
of those reliant on them. Scientists’ collective
choices, however, determine the direction of
scientific discovery more broadly (Fig. 2). Con-
servative strategies (15) serve individual careers
well but are less effective for science as a whole.
Such strategies are amplified by the file drawer
problem (16): Negative results, at odds with
established hypotheses, are rarely published,
leading to a systemic bias in published research
and the canonization of weak and sometimes
false facts (17). More risky hypotheses may have
been tested by generations of scientists, but only
those successful enough to result in publications
are known to us. One way to alleviate this con-
servative trap is to urge funding agencies to pro-
actively sponsor risky projects that test truly
unexplored hypotheses and take on special in-
terest groups advocating for particular diseases.

Measurements show that the allocation of bio-
medical resources in the United States is more
strongly correlated to previous allocations and
research than to the actual burden of diseases
(18), highlighting a systemic misalignment be-
tween biomedical needs and resources. This mis-
alignment casts doubts on the degree to which
funding agencies, often runby scientists embedded
in established paradigms, are likely to influence
the evolution of science without introducing
additional oversight, incentives, and feedback.

Novelty

Analyses of publications and patents consistently
reveal that rare combinations in scientific dis-
coveries and inventions tend to garner higher
citation rates (3). Interdisciplinary research is
an emblematic recombinant process (19); hence,
the successful combination of previously discon-
nected ideas and resources that is fundamental
to interdisciplinary researchoften violates expecta-
tions and leads to novel ideas with high impact
(20). Nevertheless, evidence from grant appli-
cations shows that, when faced with new ideas,
expert evaluators systematically give lower scores
to truly novel (21–23) or interdisciplinary (24) re-
search proposals.
Thehighest-impact science is primarily grounded

in conventional combinations of prior work, yet
it simultaneously features unusual combinations
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Fig. 2. Choosing experiments to accelerate collective discovery. (A) The average efficiency rate
for global strategies to discover new, publishable chemical relationships, estimated from all
MEDLINE-indexed articles published in 2010. This model does not take into account differences in
the difficulty or expense of particular experiments. The efficiency of a global scientific strategy is
expressed by the average number of experiments performed (vertical axis) relative to the number of
new, published biochemical relationships (horizontal axis), which correspond to new connections
in the published network of biochemicals co-occurring in MEDLINE-indexed articles. Compared
strategies include randomly choosing pairs of biochemicals, the global (“actual”) strategy inferred
from all scientists publishing MEDLINE articles, and optimal strategies for discovering 50 and
100% of the network. Lower values on the vertical axis indicate more efficient strategies, showing
that the actual strategy of science is suboptimal for discovering what has been published. The
actual strategy is best for uncovering 13% of the chemical network, and the 50% optimal strategy is
most efficient for discovering 50% of it, but neither are as good as the 100% optimal strategy for
revealing the whole network. (B) The actual, estimated search process illustrated on a hypothetical
network of chemical relationships, averaged from 500 simulated runs of that strategy. The strategy
swarms around a few “important,” highly connected chemicals, whereas optimal strategies are much
more even and less likely to “follow the crowd” in their search across the space of scientific
possibilities. [Adapted from (15)]
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(25–27). Papers of this type are twice as likely to
receive high citations (26). In other words, a
balanced mixture of new and established ele-
ments is the safest path toward successful re-
ception of scientific advances.

Career dynamics

Individual academic careers unfold in the con-
text of a vast market for knowledge production
and consumption (28). Consequently, scientific
careers have been examined not only in terms
of individual incentives and marginal productivity
(i.e., relative gain versus effort) (29), but also
institutional incentives (30, 31) and competition
(32). This requires combining large repositories
of high-resolution individual, geographic, and
temporal metadata (33) to construct represen-
tations of career trajectories that can be ana-
lyzed from different perspectives. For example,
one study finds that funding schemes that are
tolerant of early failure, which reward long-term
success, are more likely to generate high-impact
publications than grants subject to short review
cycles (31). Interacting systems with competing
time scales are a classic problem in complex sys-
tems science. The multifaceted nature of science
is motivation for generative models that high-
light unintended consequences of policies. For
example, models of career growth show that non-
tenure (short-term) contracts are responsible
for productivity fluctuations, which often result
in a sudden career death (29).
Gender inequality in science remains preva-

lent and problematic (34). Women have fewer
publications (35–37) and collaborators (38) and
less funding (39), and they are penalized in hiring
decisions when compared with equally qualified
men (40). The causes of these gaps are still un-
clear. Intrinsic differences in productivity rates
and career length can explain the differences
in collaboration patterns (38) and hiring rates
(35) betweenmale and female scientists. On the
other hand, experimental evidence shows that
biases against women occur at very early career
stages. When gender was randomly assigned
among the curricula vitae of a pool of applicants,
the hiring committee systematically penalized
female candidates (40). Most studies so far have
focused on relatively small samples. Improvements
in compiling large-scale data sets on scientific
careers, which leverage information from differ-
ent sources (e.g., publication records, grant ap-
plications, and awards), will help us gain deeper
insight into the causes of inequality andmotivate
models that can inform policy solutions.
Scientists’mobility is another important factor

offering diverse career opportunities. Most mo-
bility studies have focused on quantifying the
brain drain and gain of a country or a region
(41, 42), especially after policy changes. Research
on individual mobility and its career effect re-
mains scant, however, primarily owing to the
difficulty of obtaining longitudinal information
about the movements of many scientists and
accounts of the reasons underlying mobility de-
cisions. Scientists who left their country of origin
outperformed scientists who did not relocate,

according to their citation scores, which may
be rooted in a selection bias that offers better
career opportunities to better scientists (43, 44).
Moreover, scientists tend to move between in-
stitutions of similar prestige (45). Nevertheless,
when examining changes in impact associated
with each move as quantified by citations, no
systematic increase or decrease was found, not
even when scientists moved to an institution of
considerably higher or lower rank (46). In other
words, it is not the institution that creates the
impact; it is the individual researchers thatmake
an institution.
Another potentially important career factor

is reputation—and the dilemma that it poses
for manuscript review, proposal evaluation, and
promotion decisions. The reputation of paper
authors, measured by the total citations of their

previous output, markedly boosts the num-
ber of citations collected by that paper in the
first years after publication (47). After this
initial phase, however, impact depends on the
reception of the work by the scientific com-
munity. This finding, along with the work re-
ported in (46), suggests that, for productive
scientific careers, reputation is less of a critical
driver for success than talent, hard work, and
relevance.
A policy-relevant question is whether creativity

and innovation depend on age or career stage.
Decades of research on outstanding researchers
and innovators concluded that major break-
throughs take place relatively early in a career,
with a median age of 35 (48). In contrast, recent
work shows that this well-documented propen-
sity of early-career discoveries is fully explained
by productivity, which is high in the early stages
of a scientist’s career and drops later (49). In
other words, there are no age patterns in in-
novation: A scholar’smost cited paper can be any
of his or her papers, independently of the age or
career stage when it is published (Fig. 3). A
stochastic model of impact evolution also indi-
cates that breakthroughs result from a combina-
tion of the ability of a scientist and the luck of
picking a problem with high potential (49).

Team science

During past decades, reliance on teamwork has
increased, representing a fundamental shift in
the way that science is done. A study of the
authorship of 19.9 million research articles and
2.1 million patents reveals a nearly universal
shift toward teams in all branches of science
(50) (Fig. 4). For example, in 1955, science and
engineering teams authored about the same
number of papers as single authors. Yet by 2013,
the fraction of team-authored papers increased
to 90% (51).
Nowadays, a team-authored paper in science

and engineering is 6.3 times more likely to re-
ceive 1000 citations or more than a solo-authored
paper, a difference that cannot be explained by
self-citations (50, 52). One possible reason is a
team's ability to come up with more novel com-
binations of ideas (26) or to produce resources
that are later used by others (e.g., genomics).
Measurements show that teams are 38% more
likely than solo authors to insert novel combina-
tions into familiar knowledge domains, support-
ing the premise that teams can bring together
different specialties, effectively combining knowl-
edge to prompt scientific breakthroughs. Having
more collaborations means greater visibility
through a larger number of coauthors, who will
likely introduce the work to their networks, an
enhanced impact thatmay partially compensate
for the fact that credit within a team must be
shared with many colleagues (29).
Work from large teams garners, on average,

more citations across a wide variety of domains.
Research suggests that small teams tend to dis-
rupt science and technology with new ideas and
opportunities, whereas large teams develop ex-
isting ones (53). Thus, it may be important to
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Fig. 3. Impact in scientific careers. (A) Publica-
tion record of three Nobel laureates in physics.
The horizontal axis indicates the number of years
after a laureate’s first publication, each circle
corresponds to a research paper, and the height
of the circle represents the paper’s impact,
quantified by c10, the number of citations
after 10 years.The highest-impact paper of a
laureate is denoted with an orange circle.
(B) Histogram of the occurrence of the highest-
impact paper in a scientist’s sequence of
publications, calculated for 10,000 scientists.The
flatness of the histogram indicates that the
highest-impact work can be, with the same
probability, anywhere in the sequence of papers
published by a scientist (49).
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fund and foster teams of all sizes to temper the
bureaucratization of science (28).
Teams are growing in size, increasing by an

average of 17% per decade (50, 54), a trend under-
lying a fundamental change in team composi-
tions. Scientific teams include both small, stable
“core” teams and large, dynamically changing
extended teams (55). The increasing team size
in most fields is driven by faster expansion of ex-
tended teams, which begin as small core teams
but subsequently attract new members through
a process of cumulative advantage anchored by
productivity. Size is a crucial determinant of team
survival strategies: Small teams survive longer
if they maintain a stable core, but larger teams
persist longer if they manifest a mechanism for
membership turnover (56).
As science has accelerated and grown increas-

ingly complex, the instruments required to ex-
pand the frontier of knowledge have increased
in scale and precision. The tools of the trade
become unaffordable to most individual inves-
tigators, but also to most institutions. Collabora-
tion has been a critical solution, pooling resources
to scientific advantage. The LargeHadron Collider
at CERN, the world’s largest and most power-
ful particle collider, would have been unthink-
able without collaboration, requiring more than
10,000 scientists and engineers from more than
100 countries. There is, however, a trade-off with
increasing size that affects the value and risk
associatedwith “big science” (2). Although itmay
be possible to solve larger problems, the burden
of reproducibility may require duplicating initial
efforts, which may not be practically or econom-
ically feasible.
Collaborators can have a large effect on scien-

tific careers. According to recent studies (57, 58),
scientists who lose their star collaborators ex-
perience a substantial drop in their productivity,
especially if the lost collaborator was a regular
coauthor. Publications involving extremely strong
collaborators gain 17% more citations on average,
pointing to the value of career partnership (59).
Given the increasing number of authors on

the average research paper, who should and does
gain the most credit? The canonical theory of
credit (mis)allocation in science is the Matthew
effect (60), in which scientists of higher statuses
involved in joint work receive outsized credit for
their contributions. Properly allocating individual
credit for a collaborative work is difficult because
we cannot easily distinguish individual contribu-
tions (61). It is possible, however, to inspect the co-
citation patterns of the coauthors’ publications to
determine the fraction of credit that the commu-
nity assigns to each coauthor in a publication (62).

Citation dynamics

Scholarly citation remains the dominant mea-
surable unit of credit in science. Given the re-
liance of most impact metrics on citations (63–66),
the dynamics of citation accumulation have been
scrutinized by generations of scholars. From foun-
dational work by Price (67), we know that the
distribution of citations for scientific papers is
highly skewed: Many papers are never cited, but

seminal papers can accumulate 10,000 or more
citations. This uneven citation distribution is a
robust, emergent property of the dynamics of
science, and it holds when papers are grouped
by institution (68). If the number of citations of
a paper is divided by the average number of
citations collected by papers in the same dis-
cipline and year, the distribution of the result-
ing score is essentially indistinguishable for all
disciplines (69, 70) (Fig. 5A). This means that
we can compare the impact of papers published
in different disciplines by looking at their relative
citation values. For example, a paper in mathe-
matics collecting 100 citations represents a higher
disciplinary impact than a paper in microbiol-
ogy with 300 citations.
The tail of the citation distribution, capturing

the number of high-impact papers, sheds light
on the mechanisms that drive the accumulation
of citations. Recent analyses show that it follows
a power law (71–73). Power-law tails can be gen-
erated through a cumulative advantage process
(74), known as preferential attachment in net-
work science (75), suggesting that the probability
of citing a paper grows with the number of cita-
tions that it has already collected. Such a mod-
el can be augmented with other characteristic

features of citation dynamics, such as the obso-
lescence of knowledge, decreasing the citation
probability with the age of the paper (76–79),
and a fitness parameter, unique to each paper,
capturing the appeal of the work to the scientific
community (77, 78). Only a tiny fraction of papers
deviate from the pattern described by such a
model—some of which are called “sleeping beau-
ties,” because they receive very little notice for
decades after publication and then suddenly re-
ceive a burst of attention and citations (80, 81).
The generative mechanisms described above

can be used to predict the citation dynamics of
individual papers. One predictive model (77) as-
sumes that the citation probability of a paper
depends on the number of previous citations,
an obsolescence factor, and a fitness parameter
(Fig. 5, B and C). For a given paper, one can es-
timate the three model parameters by fitting the
model to the initial portion of the citation history
of the paper. The long-term impact of the work
can be extrapolated (77). Other studies have iden-
tified predictors of the citation impact of indi-
vidual papers (82), such as journal impact factor
(72). It has been suggested that the future h-index
(83) of a scientist can be accurately predicted (84),
although the predictive power is reduced when
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Fig. 4. Size and impact of teams. Mean team size has been steadily growing over the past century.
The red dashed curves represent the mean number of coauthors over all papers; the black curves
consider just those papers receiving more citations than the average for the field. Black curves are
systematically above the dashed red ones, meaning that high-impact work is more likely to be
produced by large teams than by small ones. Each panel corresponds to one of the three main
disciplinary groups of papers indexed in the WoS: (A) science and engineering, (B) social sciences,
and (C) arts and humanities.

Box 1. Lessons from SciSci.

1. Innovation and tradition: Left bare, truly innovative and highly interdisciplinary ideas may
not reach maximum scientific impact. To enhance their impact, novel ideas should be placed in
the context of established knowledge (26).
2. Persistence: A scientist is never too old to make a major discovery, as long as he or she
stays productive (49).
3. Collaboration: Research is shifting to teams, so engaging in collaboration is beneficial.
Works by small teams tend to be more disruptive, whereas those by big teams tend to have
more impact (4, 50, 53).
4. Credit: Most credit will go to the coauthors with the most consistent track record in the
domain of the publication (62).
5. Funding: Although review panels acknowledge innovation, they ultimately tend to
discount it. Funding agencies should ask reviewers to assess innovation, not only expected
success (24).
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accounting for the scientist’s career stage and
the cumulative, nondecreasing nature of the
h-index (85). Eliminating inconsistencies in the
use of quantitative evaluation metrics in science
is crucial and highlights the importance of un-
derstanding the generatingmechanisms behind
commonly used statistics.

Outlook

Despite the discovery of universals across science,
substantial disciplinary differences in culture,
habits, and preferencesmake some cross-domain
insights difficult to appreciate within particular
fields and associated policies challenging to im-

plement. The differences among the questions,
data, and skills requiredby eachdiscipline suggest
that we may gain further insights from domain-
specific SciSci studies that model and predict
opportunities adapted to the needs of each field.
For young scientists, the results of SciSci offer
actionable insights about past patterns, helping
guide future inquirywithin their disciplines (Box 1).
The contribution of SciSci is a detailed under-

standing of the relational structure between
scientists, institutions, and ideas, a crucial starting
point that facilitates the identification of funda-
mental generating processes. Together, these data-
driven efforts complement contributions from

related research domains such as the economics
(30) and sociology of science (60, 86). Causal
estimation is a prime example, in which econ-
ometric matching techniques demand and lever-
age comprehensive data sources in the effort to
simulate counterfactual scenarios (31, 42). Assess-
ing causality is one of the most needed future
developments in SciSci:Many descriptive studies
reveal strong associations between structure and
outcomes, but the extent to which a specific struc-
ture “causes” an outcome remains unexplored.
Engaging in tighter partnerships with exper-
imentalists, SciSci will be able to better identify
associations discovered frommodels and large-
scale data that have causal force to enrich their
policy relevance. But experimenting on science
may be the biggest challenge SciSci has yet to
face. Running randomized, controlled trials that
can alter outcomes for individuals or institutions
of science, which are mostly supported by tax
dollars, is bound to elicit criticisms and pushback
(87). Hence, we expect quasi-experimental ap-
proaches to prevail in SciSci investigations in
the near future.
Most SciSci research focuses on publications

as primary data sources, implying that insights
and findings are limited to ideas successful enough
to merit publication in the first place. Yet most
scientific attempts fail, sometimes spectacularly.
Given that scientists fail more often than they
succeed, knowing when, why, and how an idea
fails is essential in our attempts to understand
and improve science. Such studies could provide
meaningful guidance regarding the reproducibility
crisis and help us account for the file drawer
problem. They could also substantially further
our understanding of human imagination by
revealing the total pipeline of creative activity.
Science often behaves like an economic sys-

tem with a one-dimensional “currency” of cita-
tion counts. This creates a hierarchical system,
in which the “rich-get-richer” dynamics suppress
the spread of new ideas, particularly those from
junior scientists and those who do not fit within
the paradigms supported by specific fields. Science
can be improved by broadening the number
and range of performance indicators. The develop-
ment of alternative metrics covering web (88)
and social media (89) activity and societal im-
pact (90) is critical in this regard. Other mea-
surable dimensions include the information (e.g.,
data) that scientists share with competitors (91),
the help that they offer to their peers (92), and
their reliability as reviewers of their peers’ works
(93). But with a profusion of metrics, more work
is needed to understand what each of them does
and does not capture to ensure meaningful in-
terpretation and avoid misuse. SciSci can make
an essential contribution by providing models
that offer a deeper understanding of the mech-
anisms that govern performance indicators in
science. For instance, models of the empirical
patterns observed when alternative indicators
(e.g., distributions of paper downloads) are used
will enable us to explore their relationship
with citation-based metrics (94) and to recognize
manipulations.
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Fig. 5. Universality in citation dynamics. (A) The citation distributions of papers published in
the same discipline and year lie on the same curve for most disciplines, if the raw number of citations
c of each paper is divided by the average number of citations c0 over all papers in that discipline
and year. The dashed line is a lognormal fit. [Adapted from (69)] (B) Citation history of four papers
published in Physical Review in 1964, selected for their distinct dynamics, displaying a “jump-decay”
pattern (blue), experiencing a delayed peak (magenta), attracting a constant number of citations
over time (green), or acquiring an increasing number of citations each year (red). (C) Citations
of an individual paper are determined by three parameters: fitness li, immediacy mi, and longevity
si. By rescaling the citation history of each paper in (B) by the appropriate (l, m, s) parameters,
the four papers collapse onto a single universal function, which is the same for all disciplines.
[Adapted from (77)]
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The integration of citation-based metrics with
alternative indicators will promote pluralism
and enable new dimensions of productive special-
ization, in which scientists can be successful in
different ways. Science is an ecosystem that re-
quires not only publications, but also communi-
cators, teachers, and detail-oriented experts.We
need individuals who can ask novel, field-altering
questions, as well as those who can answer them.
It would benefit science if curiosity, creativity,
and intellectual exchange—particularly regard-
ing the societal implications and applications of
science and technology—are better appreciated
and incentivized in the future. A more pluralistic
approach could reduce duplication and make
science flourish for society (95).
An issue that SciSci seeks to address is the

allocation of science funding. The current peer
review system is subject to biases and inconsisten-
cies (96). Several alternatives have been proposed,
such as the random distribution of funding (97),
person-directed funding that does not involve
proposal preparation and review (31), opening
the proposal review process to the entire online
population (98), removing human reviewers
altogether by allocating funds through a per-
formance measure (99), and scientist crowd-
funding (100).
A critical area of future research for SciSci

concerns the integration of machine learning
and artificial intelligence in a way that involves
machines and minds working together. These
new tools portend far-reaching implications
for science because machines might broaden a
scientist’s perspective more than human col-
laborators. For instance, the self-driving vehi-
cle is the result of a successful combination of
known driving habits and information that
was outside of human awareness, provided by
sophisticatedmachine-learning techniques.Mind-
machine partnerships have improved evidence-
based decision-making in a wide range of health,
economic, social, legal, and business problems
(101–103). How can science be improved with
mind-machine partnerships, and what arrange-
ments are most productive? These questions
promise to help us understand the science of
the future.
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