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than any previously discussed DR mechanism. Our cross-sections
are in fair agreement with the range of FALP measurements but even
our upper-bound cross-section remains ten times smaller than the
storage-ring experiments that are expected to be highly reliable. The
present calculation has not separated out the para- and ortho-
contributions, which simpli®es our theoretical description by
allowing us to average over all nuclear permutation symmetries
without imposing them explicitly.

One candidate process to consider in the future is the set of DR
pathways excited by the inverse of rotational autoionization. Those
pathways require a quantized treatment of the ionic rotational
channels, which has not yet been incorporated into our present
calculations. Rotationally autoionizing np resonances are known to
have some of the largest widths observed for H3 Rydberg
states17±19,28, but they do not necessarily generate a high DR
contribution because these states probably autoionize back to the
electron continuum before they have time to dissociate. An inves-
tigation of this pathway may help to understand why current
generation storage-ring experiments with rotationally hot target
ions appear to have a much larger DR rate than the FALP experi-
ments. For example, in ref. 4, kTrot � 0:23 eV, which implies a peak
in the rotational population at the J� � 5 state. For target ions in
the J� � 5 incident channel, electron capture can occur via inverse
rotational autoionization at energies up to the J� � 7 ionic thres-
hold, which is about 0.13 eV.

Although the present study has not solved the problem of why
different measurements of the low-energy H+3 DR rate give such
different results, our hope is that this identi®cation of the dominant
DR mechanism will stimulate further progress in both experiment
and theory in the near future. M
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Reliable communication on the Internet is guaranteed by a
standard set of protocols, used by all computers1. Here we show
that these protocols can be exploited to compute with the com-
munication infrastructure, transforming the Internet into a dis-
tributed computer in which servers unwittingly perform
computation on behalf of a remote node. In this model, which
we call `parasitic computing', one machine forces target computers
to solve a piece of a complex computational problem merely by
engaging them in standard communication. Consequently, the
target computers are unaware that they have performed computa-
tion for the bene®t of a commanding node. As experimental
evidence of the principle of parasitic computing, we harness the
power of several web servers across the globe, whichÐunknown
to themÐwork together to solve an NP complete problem2.

Sending a message through the Internet is a sophisticated process
regulated by layers of complex protocols. For example, when a user
selects a URL (uniform resource locator), requesting a web page, the
browser opens a transmission control protocol (TCP) connection to
a web server. It then issues a hyper-text transmission protocol
(HTTP) request over the TCP connection. The TCP message is
carried via the Internet protocol (IP), which might break the
message into several packages, that navigate independently through
numerous routers between source and destination. When an HTTP
request reaches its target web server, a response is returned via the
same TCP connection to the user's browser. The original message is
reconstructed through a series of consecutive steps, involving IP and
TCP; it is ®nally interpreted at the HTTP level, eliciting the
appropriate response (such as sending the requested web page)1.
Thus, even a seemingly simple request for a web page involves a
signi®cant amount of computation in the network and at the
computers at the end points. The success of the Internet rests on
the cooperation of and trust between all involved parties.
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Here we demonstrate that the trust-based relationships between
machines connected on the Internet can be exploited to use the
resources of multiple servers to solve a problem of interest without
authorization. In essence, a `parasitic computer' is a realization of an
abstract machine for a distributed computer that is built upon
standard Internet communication protocols. We use a parasitic
computer to solve the well known NP-complete satis®ability prob-
lem, by engaging various web servers physically located in North
America, Europe, and Asia, each of which unknowingly participated
in the experiment. Like the SETI@home project (see http://www.
seti.org), parasitic computing decomposes a complex problem into
computations that can be evaluated independently and solved by
computers connected to the Internet; unlike the SETI project,
however, it does so without the knowledge of the participating
servers. Unlike `cracking' (breaking into a computer) or computer
viruses, however, parasitic computing does not compromise the
security of the targeted servers, and accesses only those parts of the
servers that have been made explicitly available for Internet com-
munication.

To solve many NP complete problems, such as the travelling
salesman or the satis®ability problem, a common technique is to
generate a large number of candidate solutions and then test the
candidates for their adequacy. Because the candidate solutions can
be tested in parallel, an effective computer architecture for these
problems is one that supports simultaneous evaluation of many
tests. An example of such a machine is illustrated in Fig. 1a. Here,
the computer consists of a collection of target nodes connected to a
network, where each of the target nodes contains an arithmetic and
logic unit (ALU) that is capable of performing the desired test and a
network interface (NIF) that allows the node to send and receive
messages across the network. A single home parasite node initiates
the computation, sends messages to the targets directing them to
perform the tests, and tabulates the results.

Owing to the many layers of computation involved in receiving
and interpreting a message, there are several Internet protocols that,
in principle, could be exploited to perform a parasitic computation.
For example, an IP-level interpretation could force routers to solve
the problem, but such an implementation creates unwanted local
bottlenecks. To truly delegate the computation to a remote target
computer, we need to implement it at the TCP or higher levels.
Potential candidate protocols include TCP, HITP, or encryption/
decryption with secure socket layer (SSL).

During package transfer across the Internet, messages can be
corrupted, that is, the bits can change. TCP contains a checksum
that provides some data integrity of the message. To achieve this, the
sender computes a checksum and transmits that with the message.
The receiver also computes a checksum, and if it does not agree with
the sender's, then the message was corrupted (see Fig. 2). One
property of the TCP checksum function is that it forms a suf®cient
logical basis for implementing any Boolean logic function, and by
extension, any arithmetic operation3.

To implement a parasitic computer using the checksum function
we need to design a special message that coerces a target server into
performing the desired computation. As a test problem we choose
to solve the well known `satis®ability' (or SAT) problem, which is a
common test for many unusual computation methods4,5. The SAT
problem involves ®nding a solution to a Boolean equation that
satis®es a number of logical clauses. For example, (x1 XOR x2) AND
(,x2 AND x3) in principle has 23 potential solutions, but it is
satis®ed only by the solution x1 � 1, x2 � 0, and x3 � 1. This is
called a 2-SAT problem because each clause, shown in parentheses,
involves two variables. The more dif®cult 3-SAT problem is
known to be NP complete, which in practice means that there is
no known polynomial-time algorithm which solves it. Indeed,
the best known algorithm for an n-variable SAT problem scales
exponentially with n, following (1.33)n (ref. 6). Here we follow a
brute-force approach by instructing target computers to evaluate, in
a distributed fashion, each of the 2n potential solutions.

A possible parallel approach to the SAT problem is shown
schematically in Fig. 1. The parasite node creates 2n specially
constructed messages designed to evaluate a potential solution.
The design of the message, exploiting the TCP checksum, is
described in Fig. 3. These messages are sent to many target servers
throughout the Internet. Note that while we choose the simpler 2-
SAT case to illustrate the principle behind the coding, the method
can be extended to code the NP complete 3-SAT problem as well, as
explained in the Supplementary Information (see also http://
www.nd.edu/~parasite). The message received by a target server
contains an IP header, a TCP header, and a candidate solution
(values for xi). The operators in the Boolean equation determine the
value of the checksum, which is in the TCP header. The parasite
node injects each message into the network at the IP level (Fig. 1),
bypassing TCP. After receiving the message, the target server veri®es
the data integrity of the TCP segment by calculating a TCP
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Figure 1 Schematic diagram of our prototype parasitic computer. a, A single parasite

node (green) coordinates the computations occurring remotely in the Internet protocols. It

sends specially constructed messages to some number of targeted nodes (blue boxes),

which are web servers consisting of an arithmetic and logic unit (ALU) and a network

interface (NIF). b, Levels of communication between the parasitic node and the target in

our proof-of-principle implementation. The packet carrying the problem to be solved is

inserted into the network at the IP level, bypassing the parasitic node's TCP. The

construction of the message is such that an invalid solution fails the TCP checksum and is

dropped, which is illustrated by the black path labelled `failure'. Consequently, only valid

solutions propagate up through the TCP protocol layer to HTTP, illustrated by the red path

labelled `success'. Targeted web servers respond to all requests that reach HTTP, even

invalid HTTP requests. Thus, the parasite node sends out a message for each possible

solution (black arrow in a), but only receives a response for each solution that is valid (red

arrow in a).
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checksum. The construction of the message (Fig. 3) ensures that the
TCP checksum fails for all messages containing an invalid solution
to the posed SAT problem. Thus, a message that passes the TCP
checksum contains a correct solution. The target server will respond
to each message it receives (even if it does not understand the
request). As a result, all messages containing invalid solutions are
dropped in the TCP layer. Only a message which encodes a valid
solution `reaches' the target server, which sends a response to the
`request' it received.

We have implemented the above scheme using as a parasitic node
an ordinary desktop machine with TCP/IP networking. The tar-
geted computers are various web servers physically located in North
America, Europe, and Asia, each of which unwittingly participated
in the experiment. As explained in Fig. 1, our parasite node
distributed 2n messages between the targets. Because only messages
containing valid solutions to the SAT problem pass through TCP,
the target web server received only valid solutions. This is inter-
preted as an HTTP request, but it is of course meaningless in this
context. As required by HTTP, the target web server sends a response
to the parasitic node, indicating that it did not understand the
request. The parasite node interprets this response as attesting to the
validity of the solution. As expected and by design, incorrect

solutions do not generate responses for the web server. A typical
message sent by the parasite, and a typical response from a target
web server are included in the Supplementary Information.

Our technique does not receive a positive acknowledgement that
a solution is invalid because an invalid solution is dropped by TCP.
Consequently, there is a possibility of false negatives: cases in which
a correct solution is not returned, which can occur for two reasons.
First, the IP packet could be dropped, which might be due to data
corruption or congestion. Normally TCP provides a reliability
mechanism against such events7, but our current implementation
cannot take advantage of this. Second, because this technique
exploits the TCP checksum, it circumvents the function the check-
sum provides. The TCP checksum catches errors that are not caught
in the checks provided by the transport layer, such as errors in
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Next, the sender performs a bit-wise complement on the checksum, so that every bit is

¯ipped: a 0 becomes a 1 and a 1 becomes a 0, obtaining SUMP . An example of a

checksum and its complement are shown in the ®gure. c, The sender incorporates the

complement of the checksum into the header of the message. d, The receiving computer

(target) again breaks the received message into 16-bit segments and adds them together.

The value of the checksum SUMT calculated by the target is SUMP � SUMP , the ®rst term

coming from the header and the second term being the contribution from

S 1 � S 2 � ¼ � S k . As SUMP and SUMP are complementary, the checksum obtained

by the receiver has to be 1111111111111111. If any bit along the message has been

corrupted during transmission, the checksum obtained by the target will be different from

all ones, in which case the target drops the message. A non-corrupted message is passed

to the HTTP protocol, which will attempt to interpret its content.
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Figure 3 Deciding satis®ability using checksum. The 2-SAT problem shown in a involves

16 variables {x 1; x 2;¼; x 16} and the operators AND (^) and XOR (!). b, The logical table

of XOR, AND and the binary sum (�). In order to get a TRUE answer for P, each clause

shown in separate parentheses in a needs to be independently TRUE. c, To evaluate the

value of P we generate a 32-bit message M that contains all 16 variables, each preceded

by a zero. As an illustration, we show a possible solution E. TCP groups the bits of the

received message in two 16-bit segment and adds them together (Fig. 2a). As shown in d,

this will result in adding each (x i ; x i�1) pair together where i is odd. The sum can have four

outcomes. Comparing the sum with the (!) column in the table in b, we notice that a TRUE

answer for the XOR clause (x i ! x i�1) coincides with the (01) result of the (x i ; x i�1) sum.

Similarly, if the clause has an AND operator, (x i ^ x i�1) is true only when the checksum is

(10). This implies that for a set of variables {x 1; x 2;¼; x 16} that satis®es P the checksum

will be determined by the corresponding operators only (that is, a ! should give (01) for

the sum check, and for ^ the sum is (10)). For illustration, in d we show the formal lineup of

the variables, while in e we show an explicit example. The correct complemented

checksum for E should be SUM � 10110110100110. In contrast, the parasitic computer

places in the header the transmitted checksum T c � 1001101001100110, which is

uniquely determined by the operators in P, as shown in d. To turn the package into a

parasitic message the parasitic node prepares a package, shown in f, preceded by a

checksum Tc, and continued by a 32-bit sequence (S1, S2), which represent one of the 216

potential solutions. If S1 and S2 do not represent the correct solution, then the checksum

evaluated by the target TCP will not give the correct sum (111¼11). The TCP layer at the

target concludes that the message has been corrupted, and drops it. However, if S1 and S2

contain the valid solution, the message is sent to HTTP. The web server interprets the

solution as an HTTP request; however, because it is not a valid HTTP request, the web

server responds with a message saying something like `page not found' (red arrow in Fig.

1a). Thus, every message to which the parasite node receives a response is a solution to

the posed SAT problem (see Fig. 2d).
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intermediate routers and the end points8. Measurements show that
the TCP checksum fails in about 1 in 210 messages9. The actual
number of TCP checksum failures depends on the communication
path, message data, and other factors. To test the reliability of our
scheme, we repeatedly sent the correct solution to several host
computers located on three continents. The rate of false negatives
with our system ranged from 1 in about 100 to less than 1 in 17,000.

The implementation offered above represents only a proof of
concept of parasitic computing. As such, our solution merely serves
to illustrate the idea behind parasitic computing, and it is not
ef®cient for practical purposes in its current form. Indeed, the TCP
checksum provides a series of additions and a comparison at the
cost of hundreds of machine cycles to send and receive messages,
which makes it computationally inef®cient. To make the model
viable, the computation-to-communication ratio must increase
until the computation exported by the parasitic node is larger
than the amount of cycles required by the node to solve the problem
itself instead of sending it to the target. However, we emphasize that
these are drawbacks of the presented implementation and do not
represent fundamental obstacles for parasitic computing. It remains
to be seen, however, whether a high-level implementation of a
parasitic computer, perhaps exploiting HTTP or encryption/
decryption could execute in an ef®cient manner.

It is important to note that parasitic computing is conceptually
related but philosophically different for cluster computing10, which
links computers such that their cumulative power offers computa-
tional environments comparable to the best supercomputers. A
prominent example of cluster computing is the SETI program,
which has so far enlisted over 2.9 million computers to analyse radio
signals in search of extraterrestrial intelligence. In cluster comput-
ing, the computer's owner willingly downloads and executes soft-
ware, which turns his computer into a node of a vast distributed
computer. Thus, a crucial requirement of all cluster computing
models is the cooperation of the computer's owner. This is also one
of its main limitations, as only a tiny fraction of computer owners
choose to participate in such computations. In this respect, parasitic
computing represents an ethically challenging alternative for cluster
computing, as it uses resources without the consent of the compu-
ter's owner.

Although parasitic computing does not compromise the security
of the target, it could delay the services the target computer
normally performs, which would be similar to a denial-of-service
attack, disrupting Internet service11,12. Thus, parasitic computing
raises interesting ethical and legal questions regarding the use of a
remote host without consent, challenging us to think about the
ownership of resources made available on the Internet. Because
parasitic computation exploits basic Internet protocols, it is tech-
nically impossible to stop a user from launching it. For example,
changing or disrupting the functions that are exploited by parasitic
computing would simply eliminate the target's ability to commu-
nicate with the rest of the Internet.

In summary, parasitic computing moves computation onto what
is logically the communication infrastructure of the Internet,
blurring the distinction between computing and communication.
We have shown that the current Internet infrastructure permits one
computer to instruct other computers to perform computational
tasks that are beyond the target's immediate scope. Enabling all
computers to swap information and services they are needed could
lead to unparalleled emergent behaviour, drastically altering the
current use of the Internet13,14. M
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Brittle failure limits the compressive strength of rock and ice
when rapidly loaded under low to moderate con®nement. Higher
con®nement or slower loading results in ductile failure once the
brittle±ductile transition is crossed. Brittle failure begins when
primary cracks initiate and slide, creating wing cracks at their
tips1±3. Under little to no con®nement, wing cracks extend and
link together, splitting the material into slender columns which
then fail. Under low to moderate con®nement, wing crack growth
is restricted and terminal failure is controlled by the localization
of damage along a narrow band. Early investigations proposed
that localization results from either the linkage of wing cracks1±3

or the buckling of microcolumns created between adjacent wing
cracks4,5. Observations of compressive failure in ice6 suggest a
mechanism whereby localization initiates owing to the bending-
induced failure of slender microcolumns created between sets of
secondary cracks emanating from one side of a primary crack.
Here we analyse this mechanism, and show that it leads to a
closed-form, quantitative model that depends only on indepen-
dently measurable mechanical parameters. Our model predic-
tions for both the brittle compressive strength and the brittle±
ductile transition are consistent with data from a variety of
crystalline materials, offering quantitative evidence for universal
processes in brittle failure and for the broad applicability of the
model.

Beginning at 20±30% of the terminal failure stress, high-resolu-
tion images of brittle compressive failure in ice6 reveal both wing
cracks and secondary cracks emanating from one side of a sliding
primary crack (Fig. 1). The secondary cracks create parallel sets of
slender microcolumns which are ®xed on one end and free on the
other. In contrast to previous failure models which have invoked
microcolumns as a key element in the failure process3±5, the
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