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Nanoscale Structure Formation on Sputter Eroded Surface
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We investigate the morphological features of sputter eroded surfaces, demonstrating that while
at short times ripple formation is described by the linear theory, after a characteristic time, the
nonlinear terms determine the surface morphology, by monitoring the surface width and the erosion
velocity. Furthermore, we show that sputtering under normal incidence leads to the formation of
spatially ordered uniform nanoscale islands or holes. We find that while the size of these nanos-
tructures is independent of flux and temperature, it can be controlled by ion beam energy.

I. INTRODUCTION

Experimental results on ion sputtered surfaces, cov-
ering amorphous and crystalline materials (SiO2 [1]),
and both metals (Ag [2]) and semiconductors (Ge [3], Si
[4,5]), have motivated extensive theoretical work aiming
to uncover the mechanism responsible for ripple forma-
tion and kinetic roughening. A particularly successful
model has been proposed by Bradley and Harper (BH)
[6], in which the height h(x, y, t) of the eroded surface is
described by the linear equation

∂th = νx∂
2
xh+ νy∂

2
yh−K∂4h, (1)

where νx and νy are effective surface tensions, and K is
the surface diffusion constant. The balance of the unsta-
ble erosion term (−|ν|∂2h) and the smoothing surface
diffusion term (−K∂4h) generates ripples with wave-
length `i = 2π

√
2K/|νi|, where i refers to the direc-

tion (x or y) along which the associated νi (νx or νy)
is the largest. While successful in predicting the ripple
wavelength and orientation [7], this linear theory cannot
explain a number of experimental features, such as the
saturation of the ripple amplitude [8–10], the observa-
tion of rotated ripples [11], and the appearance of kinetic
roughening [12,13]. These phenomena can be explained
by the noisy nonlinear equation, called the Kuramoto-
Sivashinsky (KS) equation [14],
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where λx and λy describe the tilt-dependent erosion rate,
and η(x, y, t) is an uncorrelated white noise with zero
mean, and mimicks the randomness resulting from the
stochastic nature of ion arrival to the surface [14,15].

When the nonlinear terms and the noise are neglected,
Eq.(2) reduces to the linear theory Eq. (1), and predicts
ripple formation. It is known that the isotropic KS equa-
tion (νx = νy < 0, Kx = Ky = Kxy/2, and λx = λy)
asymptotically (for large time and length scales) predicts
kinetic roughening, with exponents similar to those seen
experimentally in ion sputtering [12]. For positive νx
and νy, Eq. (2) reduces to the anisotropic Kardar-Parisi-
Zhang (KPZ) equation [16], whose scaling behavior is
controlled by the sign of λx · λy [17]. Finally, a recent
integration by Rost and Krug [18] of the noiseless ver-
sion of Eq. (2) provided evidence that when λx · λy < 0,
new ripples, unaccounted for by the linear theory, ap-
pear and that their direction is rotated with respect to
the ion direction [18]. The nonlinear effects have been
largely unexplored experimentally due to lack of theoret-
ical predictions of an experimentally detectable signature
that distinguishes them from the linear effects. To make
specific predictions on the morphology of ion-sputtered
surfaces, we need to gain a full understanding of the non-
linear behavior predicted by Eq. (2). In this paper we
numerically integrate Eq. (2), aiming to uncover the dy-
namics and the morphology of the surfaces for different
values of the parameters.

II. SIMULATIONS

The direct numerical integration is carried out by us-
ing standard discretization techniques to discretize the
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Fig. 1. Time evolution of (a) the surface width W 2 and
(b) the mean height h̄ for the parameters νx = −0.0001,
νy = −0.6169, and Kx = Ky = Kxy/2 = 2. The different
curves correspond to different values of λx = λy = λ. In
(a), from top to bottom, the curves correspond to λ = 0,
−10−5, −10−4, −10−3, −10−2, and −10−1, respectively. In
(b), from bottom to top, they correspond to λ = −10−5,
−10−4, −10−3, −10−2, and −10−1, respectively. Inset (a):
The crossover time τ , estimated from (a) is shown as a func-
tion of ln |λ|. Inset (b): Plot of ln |v| versus ln |λ|. The dotted
line has a slope ≈ −1.07, implying v ∼ 1/λ.

continuum equation, Eq. (2) [19]. Since the sign of the
nonlinear terms plays a significant role in defining the
surface morphology, we discuss separately the λx ·λy > 0
and λx · λy < 0 cases.

The λx · λy > 0 case: A general feature of systems such
as Eq. (2) is that the nonlinear terms do not affect the
surface morphology or dynamics until a crossover time τ
has been reached. Thus, we expect that for early times,
i.e., for t < τ , the surface morphology and dynamics
are properly described by the linear theory. To demon-
strate this separation of the linear and nonlinear regions,
in Fig. 1, we show the time dependences of the surface
width defined as W 2(L, t) ≡ 1

L2

∑
x,y h

2(x, y, t)− h̄2 and
of the mean height h̄ = 1

L2

∑
x,y h(x, y, t). We find that

for t < τ , the width W increases exponentially while
the mean height stays constant at h̄ = 0. Furthermore,
inspecting the surface morphology, we find that in this
region the ripple wavelength and orientation are also cor-
rectly described by the linear theory.

While the early time behavior is correctly predicted by
the linear theory, beyond the crossover time τ , the non-
linear terms become effective. One of the most striking

Fig. 2. (a) Time evolution of the mean height h̄ (dashed,
left linear scale) and the surface width (solid, right logarith-
mic scale) for the parameters, νx = −0.6169, νy = −0.01,
Kx = Ky = Kxy/2 = 2, λx = 1, and λy = −4. The dot-
ted lines seperate the three regions discussed in the text. (b)
The dependence of |v| on the nonlinear terms |λx + λy| for
the same parameters used in (a). The dotted line has a slope
≈ −1.02, implying v ∼ 1/(λ1 + λ2).

consequence of these terms is that the surface width sta-
bilizes rather abruptly [see Fig. 1]. Furthermore, the rip-
ple pattern generated in the linear region disappears, and
the surface exhibits kinetic roughening. The crossover
time τ from the linear to the nonlinear behavior can be
estimated by comparing the strength of the linear term
with that of the nonlinear term [20]:

τ ∼ (K/ν2) ln(ν/λ). (3)

In this expression, ν, K, and λ refer to the direction
perpendicular to the ripple orientation. The predicted
λ-dependence of τ is confirmed in the inset of Fig. 1(a).
Another quantity that refects the transition from the lin-
ear to the nonlinear region is the erosion velocity v = ∂th̄.
The nonlinear terms act to decrease the mean height in
the case of λx < 0 and λy < 0. We can estimate the
surface velocity as v ∼ λW (L, τ)2/`2 ∼ ν3/(Kλ) using
W (L, τ) ∼ ν/λ. This dependence of v on λ is consistent
with the numerical results shown in the inset of Fig. 1(b).

The λx · λy < 0 case: As Fig. 2(a) shows, we again ob-
serve a separation of the linear and the nonlinear regions;
however, we find that the morphology and the dynamics
of the surface in the nonlinear region are quite different
from the case λx · λy > 0. In region I, for early times
(t < τ), the surface forms ripples whose wavelength and
orientation is correctly described by the linear theory.
After the first crossover time τ , given by Eq. (3), the
surface width is stabilized, and the ripples disappear.
After τ , the system enters a rather long transient region,
that we call region II. Here, the surface is rough, and
no apparent spatial order is present. We often observe
the development of individual ripples, but they soon dis-
appear, and no long-range order is present in the sys-
tem. However, at a second crossover time, τ2, a new
ripple structure suddenly forms, in which the ripples are
stable and rotated with an angle θc to the x direction.
The angle θc has the value θc = tan−1

√
−λx/λy, (or
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Fig. 3. (a) − (c) Surface morphologies predicted by Eq. (2)
for λ = 1 at different stages of surface evolution. The pictures
correspond to (a) t =4.0, (b) 5.8, and (c) 8.0 × 104. (d) −
(f) are the same as in (a) − (c), but for λ = −1. In all cases,
we used ν = 0.6169, K = 2, and a system size 256 × 256.

tan−1
√
−λy/λx) [18].

The demonstrated morphological transitions generate
an anomalous behavior in h̄ as well. As Fig. 2(a) shows,
the mean height is zero in the linear region, increases as
the ripples are destroyed in region II, and decreases with
a constant velocity in region III. More specifically, ripples
are aligned along the y-axis in region I, because `x � `y.
Thus, the contribution of (∂xh)2 is much larger than that
of (∂yh)2, even though |λx| < |λy|, and the surface height
increases due to the term λx(∂xh)2 with λx > 0 in region
II. However, as the ripples are destroyed by the nonlin-
ear effects, the contribution of the (∂yh)2 term increases,
and eventually λy(∂yh)2 becomes larger than λx(∂xh)2,
forcing the mean height to decrease because λy < 0. The
velocity in region III is determined by the nonlinear coef-
ficient in the direction along the ripples, which reduces to
λx +λy after a coordinate transformation to the rotated
ripple direction. This prediction is in good agreement
with the results of Fig. 2(b), which demonstrates that
v ∼ 1/(λx + λy).

III. QUANTUM DOT AND HOLE
FORMATION

Under normal incidence [21], the coefficients in Eq.(2)
are isotropic and are given by [15,22]

ν ≡ νx = νy = −faa2
σ/2a

2
µ, (4)

K ≡ Kx = Ky = fa3a2
σ/8a

4
µ, (5)

λ ≡ λx = λy = (f/2a2
µ)(a2

σ − a4
σ − a2

µ), (6)

where aµ = a/µ and aσ = a/σ, and µ and σ character-
ize the shape of the collision cascade of the bombard-

ing ion. The morphology of the ion-sputtered surface
at three different stages of time evolution is shown in
Fig. 3. Let us first concentrate on the λ > 0 case [upper
panels in Fig. 3]. In the early stages of the sputtering
process, the surface is dominated by small, wavy pertur-
bations [Fig. 3(a)] generated by the interplay between
the ion-induced instability and surface relaxation. How-
ever, since the system is isotropic in the (x, y) plane,
these ripple precursors are oriented randomly, generat-
ing short wormlike morphologies on the surface. After
some characteristic time, τ , these structures turn into
isolated but closely packed islands, reminiscent of the
quantum dots (QDs) reported experimentally [Fig. 3(b)]
[23]. Note that upon a closer inspection one can observe
the emergence of hexagonal order in the island positions.
As the sputtering proceeds, the supporting surface devel-
ops a rough profile, destroying the overall uniformity of
the islands [Fig. 3(c)]. A similar scenario is observed for
λ < 0, the only difference being that now the islands are
replaced by holes [Figs. 3(d) − (f)]. The first conclusion
we can draw from these results is that the development of
QDs and holes is governed by the same underlying phys-
ical phenomena, the only difference being that for QDs
we have λ > 0, and for holes λ < 0. Indeed, this morpho-
logical change is expected from the nonlinear continuum
theory, Eq. (2), being symmetric under the simultaneous
transformation λ → −λ and h → −h, indicating that
changing the sign of λ does not affect the dynamics of
the surface evolution, but simply turns the islands into
mirrored holes. Since, according to Eq. (5) the sign of
λ is determined only by the relative magnitudes of aσ
and aµ, whether islands or holes appear is determined
by the shape of the collision cascade [21]. Consequently,
using Eq. (5) we can draw a phase diagram in terms of
the reduced penetration depths, aσ and aµ, that sepa-
rate the regions displaying QDs and holes [21]. These
results also indicate that the QDs and holes are inher-
ently nonlinear objects, since, should the linear terms be
responsible for their formation, the surface morphology
should not depend on the sign of λ (Eq. (1) has a full
h→ −h symmetry.)

Using Eqs. (3) and (4), we find that ` =
√

2πµ; i.e.,
from the average separation of the islands one can de-
termine the size of the horizontal width of the colli-
sion cascade [21]. Furthermore, since typically we have
µ ∼ a ∼ ε2m, when ε is the ion energy and m is an con-
stant that weakly depend on ε (m = 1/2 for ε ≈ 10 ∼ 100
keV), we predict that one can tune the size of the QDs by
changing the ion energy ε, while the size is independent
of the flux and the temperature. It would be interesting
to reproduce surface morphology using numerical simu-
lations directly [24].
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