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A structural transition in physical networks
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In many physical networks, including neurons in the brain1,2, 
three-dimensional integrated circuits3 and underground hyphal 
networks4, the nodes and links are physical objects that cannot 
intersect or overlap with each other. To take this into account, 
non-crossing conditions can be imposed to constrain the geometry 
of networks, which consequently affects how they form, evolve 
and function. However, these constraints are not included in the 
theoretical frameworks that are currently used to characterize real 
networks5–7. Most tools for laying out networks are variants of the 
force-directed layout algorithm8,9—which assumes dimensionless 
nodes and links—and are therefore unable to reveal the geometry 
of densely packed physical networks. Here we develop a modelling 
framework that accounts for the physical sizes of nodes and links, 
allowing us to explore how non-crossing conditions affect the 
geometry of a network. For small link thicknesses, we observe a 
weakly interacting regime in which link crossings are avoided via 
local link rearrangements, without altering the overall geometry 
of the layout compared to the force-directed layout. Once the link 
thickness exceeds a threshold, a strongly interacting regime emerges 
in which multiple geometric quantities, such as the total link length 
and the link curvature, scale with the link thickness. We show that 
the crossover between the two regimes is driven by the non-crossing 
condition, which allows us to derive the transition point analytically 
and show that networks with large numbers of nodes will ultimately 
exist in the strongly interacting regime. We also find that networks 
in the weakly interacting regime display a solid-like response to 
stress, whereas in the strongly interacting regime they behave in 
a gel-like fashion. Networks in the weakly interacting regime are 
amenable to 3D printing and so can be used to visualize network 
geometry, and the strongly interacting regime provides insights into 
the scaling of the sizes of densely packed mammalian brains.

To lay out physical networks, the links and nodes must be arranged 
in such a way to avoid crossing each other, while minimizing the total 
length of the links, because long links can be costly in systems such as 
brains. In other words, we must find the shortest path for each link, 
which may not be a straight path if the straight path is obstructed by 
other nodes and links—a problem that is equivalent to stretching a 
rubber band between flexible obstacles (Fig. 1; see Supplementary 
Information section 3.A for a proof of this equivalence10).

To find the shortest path, we propose a model in which the forces that 
govern the motion of the nodes and links are determined by the gradi-
ent of the total potential energy. We define the total potential energy as:
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where Vel is the total elastic potential of all links (l = 1, …, L). Each link 
is modelled as an elastic cylinder with radius rL, which experiences 
internal elastic forces and short-range external repulsive forces from 

other links and nodes; nodes are modelled as spheres. VNL captures the 
node–link interactions at the endpoints of the links; the non-crossing 
condition is ensured by a short-range repulsive force in the node–node 
interaction VNN and in the link–link interaction VLL, which are both 
modelled as short-range Gaussian potentials with strengths set by AN 
and AL, respectively. In addition, sl parameterizes the length of link l, 
with sl

(end) denoting its endpoint; xl(sl, t) is the position of a point along 
the centre of link l at time t; Xi(t) is the position of node i (i = 1, …, N); 
rN is the range of the node–node repulsive force; k is the elastic constant 
of the links; and l ∈ 〈i〉 indicates that the sum is over all links connected 
to node i. The potential energy in equation (1) is inspired by models 
used in self-avoiding polymer chains11 and manifold dynamics12; how-
ever, given the constraints induced by the network structure, equation 
(1) has different terms and describes behaviour that is unique to net-
works.

With VLL = 0 and replacing Vel with the elastic energy of a spring, 
equation (1) reduces to the potential energy of a force-directed lay-
out (FDL) with short-range node repulsion. The lowest-energy solu-
tion of equation (1) can involve sharp bending of some links, which 
we avoid by using a Gay–Berne potential13, as in polymer physics 
(Supplementary Information section 4). Finally, we embed the network 
in a high-viscosity medium, allowing it to relax to a low-energy state 
without oscillations. Therefore, the node and link positions (Xi and xl) 
follow the first-order gradient-descent equations of motion:
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where λN and λL are the friction constants of the nodes and links 
(Supplementary Information section 3.F). We use an FDL to set the 
initial positions of the nodes and explore two versions of the model 
with different constraints: (i) in the elastic-link model (ELI), which 
corresponds to the limit λN → ∞, the positions of the nodes are 
fixed and only the links can reorganize; (ii) in the fully elastic model 
(FUEL), we assume that λN ≈ λL and hence the nodes and links are 
all free to move.

The network defined by equations (1) and (2) has an uneven potential- 
energy landscape14 with a very large number of local minima; identi-
fying the globally optimal configuration is NP hard (Supplementary 
Information section 3.G). We therefore use simulated annealing15 to 
approach an energetically favourable local minimum (Supplementary 
Information section 3.G). The computational complexity of the model 
is discussed in Supplementary Information section 8.C. In Fig. 1c we 
show how FUEL finds the optimal three-dimensional configuration of 
a lattice, helped by the thermal fluctuations from simulated annealing 
that were added to the links, which allow the layout to tunnel through 
the finite potential walls and escape local minima.

Because FDLs do not take into account the physical dimensions of 
the nodes and links, they typically have multiple link and node cross-
ings (Supplementary Information section 2). The number of cross-
ings increases linearly with rL (Fig. 2a), as predicted analytically by 
a geometric model (Supplementary Information section 2). To avoid 
these crossings, we applied ELI and FUEL to several networks with dif-
ferent topologies (random networks and Barabási–Albert16 scale-free 

1Network Science Institute, Center for Complex Network Research, Department of Physics, Northeastern University, Boston, MA, USA. 2Division of Network Medicine, Brigham and Women’s 
Hospital, Harvard Medical School, Boston, MA, USA. 3Department of Network and Data Sciences, Central European University, Budapest, Hungary. *e-mail: alb@neu.edu

6 7 6  |  N A t U r e  |  V O L  5 6 3  |  2 9  N O V e M B e r  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0726-6
mailto:alb@neu.edu


Letter reSeArCH

networks), sizes and link densities. We find that the networks undergo 
a geometric transition as we increase the link thickness (Fig. 2e–h).

For small rL (the weakly interacting regime), the ELI and FUEL lay-
outs are largely indistinguishable from the initial FDL. At low rL, the 
average link length l  is independent of rL, even as rL increases by 
orders of magnitude (Fig. 2b). This is unexpected, given that there is 
an increase by a factor of ten in the number of potential link crossings 
in this regime (Fig. 2a). The unchanged l  indicates that ELI and FUEL 
avoid the increasing number of crossing via only a small amount of 
local bending of the links. Similar behaviour is seen for the average 
curvature of the links C . We find that C  changes only modestly from 
its value at the smallest rL throughout the weakly interacting regime 
(Fig. 2c), which indicates that despite the multiple bends in some links 
that are necessary to avoid crossings the links remain mostly straight. 
Note that the behaviour of C  in the weakly interacting regime is mod-
el-dependent: the movement of nodes in FUEL provides a way of avoid-
ing crossings that requires less curving of the links. Altogether, we find 
that in the weakly interacting regime local link rearrangements are 
sufficient to avoid the multiple crossings that are present in the FDL.

Once rL exceeds a critical value rL
c (the strongly interacting regime), 

we observe a marked change in the geometry of the network (Fig. 2f, h).  
In ELI, with fixed node positions, the links must take long, convoluted 
routes outside the network to reach their end nodes because they are 
unable to find sufficient space between the nodes. This change in the 
link structure is particularly visible in the skeleton of the layout (white 

links in Fig. 2f, h). In FUEL, with flexible node positions, the links reach 
their destination by pushing the nodes away from each other. These 
changes for ELI and FUEL alter the behaviour of l , which in the 
strongly interacting regime increases linearly with rL. The change in 
link structure also results in relatively large changes in C  at rL

c; after 
the transition, C  decreases as 1/rL. Despite the different mechanisms 
that underpin the two models, the scalings of l  and C  in the strongly 
interacting regime in ELI and FUEL are independent of the network 
topology. The linear increase in l  and the 1/rL decrease in C  that we 
observe for both layout models are consistent with isometric scaling, 
indicating that the layouts in the strongly interacting regime are struc-
turally similar for different rL to each other if we rescale them by rL 
(Supplementary Information section 5.A).

We determine the origin of the transition in the geometry of the 
networks by estimating the transition point rL

c. When the links are much 
thinner than the node repulsion range rN, the layout is dominated by 
the repulsive forces between the nodes, which together occupy the vol-
ume = /V Nr4 2 3N N

3  (Supplementary Information section 10). When 
the volume occupied by the links becomes comparable to VN, the layout 
must change to accommodate the links. This change induces the tran-
sition from the weakly interacting regime to the strongly interacting 
regime. Taking into account the volume of all nodes and links, we cal-
culate the transition point = /�r r rc

L
c

N to be (Supplementary Information 
section 10):
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R is the radius of the layout, k is the degree of the nodes and the average 
/k3 2  is taken over the degree distribution of the network. In scale-free 

and random networks, in the limit N → ∞ we obtain ≈ − / /�r aL Nc 1 2 1 3 
(Supplementary Information section 10). Given that in many real and 
model networks L ≈ mN for some constant m, we obtain ∝ − /�r Nc 1 6; 
therefore, in the limit N → ∞ we find →�r 0c , which implies that the 
weakly interacting regime is absent in the thermodynamic limit. In 
other words, in networks with a large number of nodes, the crossings 
are so numerous that they cannot be ignored. Consequently, the FDL 
and other currently used layout tools that do not consider link crossings 
are expected to be inappropriate for large physical networks because 
the layouts of such networks are dominated by crossings.

Although networks with different N and L transition at different rL/rN 
ratios, if we scale rL/rN by �r c the transition occurs near unity for all 
networks. Using the scaling exponent of the average link length 
φ = /l l r( ( ) d[log( )] d[log( )])L  as the order parameter, the data collapse  

to a single curve (Fig. 2k), confirming the validity of equation (3). The 
fact that the transition points of networks with different topologies 
(scale-free and random networks, lattices and random geometric 
graphs; Supplementary Information section 11) exhibit similar depend-
ences on rL suggests that the transition shown in Fig. 2 is independent 
of the topology and degree distribution of the network.

Analysis of the effects of the size of the network on the scaling of the 
order parameter (finite-size scaling analysis) indicates that the layout 
transition occurs over a small, but non-zero range of rL/rN, regard-
less of the network size (Supplementary Information section 11). This 
result suggests that we are observing a crossover17,18 from mean-field 
behaviour (φ(l) = 0) to scaling behaviour (φ(l) = 1). For ELI and FUEL, 
the weakly interacting regime is well described by an FDL with local 
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Fig. 1 | Modelling framework to avoid link and node crossings. a, We 
model each link as a stretched, flexible rubber band, which is represented 
by many short springs connected to each other, pulled apart by elastic 
forces Fel. In ELI and FUEL, the links exert a repulsive force FLL on each 
other that falls sharply for radii larger than rL; for the FDL, FLL = 0 and 
rL = 0. Whereas in the FDL the links may cross each other (left), in ELI and 
FUEL such crossings are prohibited (right). b, A small network with N = 6 
nodes laid out using the FDL (left), which results in multiple link crossings 
(red links). Laying the network out using ELI (right) resolves these 
crossings. c, Evolution of the total link length (main plot) and layout of the 
lattice (insets) during simulated annealing, which determines the final 
layout of a lattice by minimizing the total link length, starting from a 
random layout with �r rL N. The thermal noise from the annealing helps 
links to pass through each other to resolve crossings.
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perturbations to resolve possible link crossings. However, this regime 
disappears in the thermodynamic limit (N → ∞). In this limit, only the 
strongly interacting regime is observed, which is dominated by strong 
link–link interactions and displays universal scaling.

The crossover that we observe also alters the physical properties of 
the network. For example, the response of a network to external forces 
is captured by the Cauchy stress tensor19 Tμν = ∂μ∂νV (Supplementary 
Information section 6), which depends on the physical and material 
properties of the nodes and links. In the weakly interacting regime the 
links are mostly straight; hence, the node terms VNN and VNL dominate 
the total stress. Because each node is surrounded by a varying number 
of other nodes, the stress does not spread uniformly in all directions 
but has shear (off-diagonal) components—a common feature of solids. 
In the strongly interacting regime, the links fill up the space; hence, the 
link contributions Vel + VLL dominate Tμν, resulting in a diagonal total 
stress tensor (Supplementary Information section 6). In other words, 
we predict that networks in the strongly interacting regime will display 

a fluid or gel-like response to external stress. To test the validity of the 
solid–gel transition, we compress the networks generated by FUEL in 
the y direction and measure the tensile forces σμ = Tμμ (Fig. 3a; 
Supplementary Information section 6). We again observe a crossover 
at the value of �r c predicted by equation (3) from a roughly constant 
stress in the weakly interacting regime to a monotonically increasing 
stress in the strongly interacting regime (Fig. 3b). Furthermore,  
as we rotate the network, we find that the stress ratio σ∥/σ⊥ displays 
large fluctuations in the weakly interacting regime—behaviour that is 
often observed in anisotropic solids. The fluctuations vanish at the 
transition point �r c and the stress ratio settles to the hydrostatic ratio 
σ σ/ = /⊥ 1 2  (Fig. 3c)—as expected for gels under pressure.

In summary, the geometry of physical networks is characterized by 
two distinct regimes: a weakly interacting regime, in which the overlap 
between the nodes and links is avoided via local link rearrangements, 
and a strongly interacting regime, the layout of which is shaped by the 
link–link expulsion. Networks in the weakly interacting regime are 
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Fig. 2 | Crossover in network layouts. a, The number of link crossings in 
random (circles) and scale-free (stars) networks using ELI (orange) and 
FUEL (blue) are calculated assuming that the links are straight (that is, 
using the FDL), and then normalized by the total number of pairs of links 
to obtain the crossing fraction shown. The number of link crossings in the 
FDL grows linearly with rL (grey dashed line), saturating at very high rL.  
A physically realistic layout must resolve this increasing number of 
crossings. b, In all four cases, the average link length l  remains largely 
constant in the weakly interacting regime, but grows linearly (dashed grey 
line) in the strongly interacting regime. c, The average link curvature C  
increases slowly in the weakly interacting regime, with FUEL exhibiting 
higher average curvature than ELI, then falls linearly (dashed grey line) in 
the strongly interacting regime. d, The relaxation time of the simulated 
annealing grows substantially near the transition point = / = /�r r r r rc

L
c

N L N 
(vertical pink line). e–h, ELI (e, f; orange) and FUEL (g, h; blue) layouts 
for a Barabási–Albert network16 with N = 20 nodes and minimum 
degree m = 2. When �r rL N, the ELI (e) and FUEL (g) layouts are similar 
to the FDL (not shown). For larger rL, links bend to avoid each other: for 

ELI (f), the links do not fit inside the region containing the nodes and 
make outward arcs; by contrast, because nodes are free to move for FUEL 
(h), the layout behaves more gently (that is, it contains shorter links, which 
bend less relative to ELI). In f and h, the bottom left parts of the image 
show the full-scale networks and the top right parts show the node and 
link ‘skeletons’, with the colours inverted, to help to visualize the geometry. 
i, In the weakly interacting regime �r r( )L N , the links are thin and the 
radius of the entire layout is approximately the radius R of the bounding 
sphere that surrounds the N nodes of radius rN. l, At larger rL/rN, thick 
links avoid crossing each other and their volume dominates the volume of 
the whole layout. j, The order parameter ⟨ ⟩φ = /l l r( ) d[log( )] d[log( )]L  
(the scaling exponent of ∝ φl r l

L
( )) versus rL/rN for networks with different 

N (50–200) and L (97–1,159) and different geometries (orange, random; 
blue, scale-free). k, Rescaling the ratio rL/rN by �rc (equation (3)) collapses 
the transition point, shown where φ(l) = 1/2 (red circle). This transition 
occurs over a small range of rL/rN (pink shaded area in a–d) regardless of 
the system size, providing evidence of a crossover. The black dashed curve 
is a smooth fit to the order parameter.
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solid-like, whereas those in the strongly interacting regime behave like 
gels. The transition that we observe between the two regimes is unique 
to three dimensions: because links are effectively one-dimensional 

objects, the non-crossing condition results in knot-like constraints in 
three dimensions, which prevent the links from passing through each 
other. In four dimensions or more, knots of one-dimensional objects 
can be untied20, so the non-crossing conditions will not constrain the 
geometry. Therefore, three is the lowest number of dimensions in which 
links can avoid each other by bending and the highest in which they 
cannot pass by each other without breaking or tunnelling.

Both regimes have applications. In contrast to the physical networks 
considered thus far in which the nodes and links have physical sizes, 
many networks, such as disease–gene interactions, are more abstract, 
with no real three-dimensional manifestation. In such cases, the layout 
of the network is not limited by the physical constraints of the system, 
but can be chosen in such a way to best visualize the underlying net-
work structure. Thus, the weakly interacting regime is appropriate for 
network visualizations because it clearly separates nodes and links and 
is amenable to 3D printing, which provides a way of interacting with 
the network and exploring its inner structure directly. As an example, 
we consider a network with 184 nodes and 716 links that represents 
ingredients that share flavour compounds21. For networks such as 
this with high link densities, two-dimensional visualizations suffer 
from visual cluttering, making only a fraction of the links visible21. A 
three-dimensional layout may provide more clarity, but the FDL still 
exhibits node and link overlap (Fig. 3d), obstructing the details of the 
geometry of the network. By contrast, when applying FUEL and choos-
ing rL to be sufficiently small that the layout is in the weakly interacting 
regime, we obtain a geometry that reveals the underlying structure of 
the network and is amenable to 3D printing (Fig. 3e). Given that for 
large N link crossings in the FDL are inevitable, the method introduced 
here to resolve crossings will be essential as we aim to visualize large 
networks. Although the weakly interacting regime vanishes in the ther-
modynamic limit (N  → ∞), for a large but finite network with a fixed 
number of nodes we will always be able to choose rL and rN so that we 
stay in the weakly interacting regime.

The strongly interacting regime is directly relevant to the brain—a 
three-dimensional physical network in which the close-packing of the 
axons is critical to their ability to form synapses22,23. A scaling law of 

∝ .V Aw w
1 5  between the volume Vw and surface area Aw of the white 

matter in rodent brains has been observed previously24. This law 
implies that in these networks the average neuron length scales with 
the axon thickness as = / ∝l V A rw w L, as predicted for the strongly 
interacting regime (Fig. 2b). If we describe anatomical regions as nodes 
and axon bundles connecting the anatomical regions as links, then the 
thickness of the axon bundles rL is comparable to the size of the ana-
tomical regions. This result supports the prediction of the empirical 
scaling that these brain networks are in the strongly interacting regime. 
Thus, equations (1) and (2) provide an appropriate modelling frame-
work to capture the geometry of dense neuronal networks, generating 
a layout that minimizes the total link length25,26 while respecting the 
non-crossing conditions that axons must obey1.

Data availability
All data used in the figures were generated using the simulation code available 
at https://github.com/nimadehmamy/3D-ELI-FUEL. The data that support the 
findings of this study are available from the corresponding author on reasonable 
request.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0726-6.

Received: 28 November 2017; Accepted: 21 August 2018;  
Published online 28 November 2018.

 1. Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 
648–661 (2015).

 2. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 
207–214 (2014).

101 100 101

102

103

Scale-free

High

Low
S

tr
es

s

Random

10–1 100 101
0

1

2

3

4

Rescaled link thickness, (rL/rN)/rc~

Weakly interacting regimea

b

c

d e

Strongly interacting regime

||

||
 /

||

Fig. 3 | Stressed networks and 3D printing. a, The build-up of tensile 
stress in the nodes and links as a result of compressing the network 
between two walls. Arrows indicate tensile stress components: cyan, 
parallel to the direction of compression, σ∥(x); green, perpendicular to the 
direction of compression, σ⊥(x). The networks are coloured on the basis of 
the total amount of stress. In the weakly interacting regime (left), the stress 
is concentrated in the nodes; in the strongly interacting regime (right), 
almost all of the stress is in the links. b, The parallel stress component σ∥ of 
scale-free (squares) and random (circles) networks as a function of scaled 
link thickness / /�r r r( )L N

c. Because the definition of x, y and z is frame-
dependent, we average the forces over 50 random network orientations.  
c, The ratio of parallel and transverse tensile stress components σ⊥/σ∥. 
Error bars in b and c correspond to one standard deviation around the 
mean, calculated over the 50 random orientations. In the weakly interacting 
regime, the ratio depends on the orientation of the layout (as can be seen 
from the large error bars from averaging over the orientations), which 
indicates solid-like behaviour. In the strongly interacting regime, the 
fluctuations in σ⊥/σ∥ decay, yielding a constant ratio. d, e, Visualization of 
networks. As an example, we consider a network with N = 184 and L = 716 
that represents ingredients that share flavour compounds21. A three-
dimensional rendering of the FDL (d) results in multiple crossing (red). 
The inset in d highlights a densely connected region (corresponding to 
dairy products) with a lot of overlap; consequently, it is difficult to discern 
the underlying network. By contrast, when laying out the flavour network 
using FUEL (e; printed using a commercial 3D printer), the crossings 
disappear, unveiling the inner structure of the network.

2 9  N O V e M B e r  2 0 1 8  |  V O L  5 6 3  |  N A t U r e  |  6 7 9
© 2018 Springer Nature Limited. All rights reserved.

https://github.com/nimadehmamy/3D-ELI-FUEL
https://doi.org/10.1038/s41586-018-0726-6
https://doi.org/10.1038/s41586-018-0726-6


LetterreSeArCH

 3. Wong, S. et al. Monolithic 3D integrated circuits. In 2007 International 
Symposium onVLSI Technology, Systems and Applications 1–4 (IEEE, 2007).

 4. Friese, C. F. & Allen, M. F. The spread of Va mycorrhizal fungal hyphae in the soil: 
inoculum types and external hyphal architecture. Mycologia 83, 409–418 
(1991).

 5. Barrat, A., Barthelemy, M. & Vespignani, A. Dynamical Processes on Complex 
Networks (Cambridge Univ. Press, Cambridge, 2008).

 6. Barabási, A.-L. Network Science (Cambridge Univ. Press, Cambridge, 2016).
 7. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. 

Phys. 74, 47–97 (2002).
 8. Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphs. Inf. 

Process. Lett. 31, 7–15 (1989).
 9. Fruchterman, T. M. & Reingold, E. M. Graph drawing by force-directed 

placement. Softw. Pract. Exper. 21, 1129–1164 (1991).
 10. Dubrovin, B., Fomenko, A. & Novikov, S. Modern Geometry—Methods and 

Applications. Part II: The Geometry and Topology of Manifolds [transl. by R. G. 
Burns] 371–379 (Springer, New York, 1984).

 11. des Cloizeaux, J. Lagrangian theory for a self-avoiding random chain. Phys. Rev. 
A 10, 1665–1669 (1974).

 12. Mézard, M. & Parisi, G. Replica field theory for random manifolds. J. Phys. I 1, 
809–836 (1991).

 13. Gay, J. & Berne, B. Modification of the overlap potential to mimic a linear 
site–site potential. J. Chem. Phys. 74, 3316–3319 (1981).

 14. Bouchaud, J.-P., Cugliandolo, L. F., Kurchan, J. & Mezard, M. in Spin Glasses and 
Random Fields (ed. Young, A. P.) 161–223 (World Scientific, Singapore, 1998).

 15. Kirkpatrick, S., Gelatt, C. D., Jr & Vecchi, M. P. in Spin Glass Theory and Beyond 
(eds Mézard, M., Parisi, G. & Virasoro, M. A.) 339–348 (World Scientific, 
Singapore, 1987).

 16. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 
286, 509–512 (1999).

 17. Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics Ch. 5.8 
(Cambridge Univ. Press, Cambridge, 2000).

 18. Cardy, J. Scaling and Renormalization in Statistical Physics Vol. 5, 67–71 
(Cambridge Univ. Press, Cambridge, 1996).

 19. Irgens, F. Continuum Mechanics 60–73 (Springer, Berlin, 2008).
 20. Zeeman, E. C. Unknotting combinatorial balls. Ann. Math. 78, 501–526 (1963).
 21. Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. & Barabási, A.-L. Flavor network and the 

principles of food pairing. Sci. Rep. 1, 196 (2011).

 22. Stepanyants, A., Hof, P. R. & Chklovskii, D. B. Geometry and structural plasticity 
of synaptic connectivity. Neuron 34, 275–288 (2002).

 23. Rivera-Alba, M. et al. Wiring economy and volume exclusion determine 
neuronal placement in the Drosophila brain. Curr. Biol. 21, 2000–2005 (2011).

 24. Ventura-Antunes, L., Mota, B. & Herculano-Houzel, S. Different scaling of white 
matter volume, cortical connectivity, and gyrification across rodent and primate 
brains. Front. Neuroanat. 7, 3 (2013).

 25. Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. 
Neurosci. 13, 336–349 (2012).

 26. Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. Organization, development 
and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004).

Acknowledgements We thank A. Grishchenko for 3D visualizations and 
photography, K. Albrecht, M. Martino and H. Sayama for discussions, and 
Formlabs and Shapeways for 3D printing. We were supported by grants from 
Templeton (award number 61066), NSF (award number 1735505), NIH 
(award number P01HL132825) and AHA (award number 151708).

Reviewer information Nature thanks G. Bianconi and the other anonymous 
reviewer(s) for their contribution to the peer review of this work.

Author contributions N.D. developed, ran and analysed the simulations, 
performed the mathematical modelling and derivations, and contributed to 
writing the manuscript. S.M. contributed to programming and running the 
simulations, generating figures, editing and 3D printing. A.-L.B. contributed to 
the conceptual design of the study and was the lead writer of the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/ 
10.1038/s41586-018-0726-6.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to A.-L.B.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

6 8 0  |  N A t U r e  |  V O L  5 6 3  |  2 9  N O V e M B e r  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0726-6
https://doi.org/10.1038/s41586-018-0726-6
http://www.nature.com/reprints
http://www.nature.com/reprints

	A structural transition in physical networks
	Online content
	Acknowledgements
	Reviewer information
	Fig. 1 Modelling framework to avoid link and node crossings.
	Fig. 2 Crossover in network layouts.
	Fig. 3 Stressed networks and 3D printing.




